Skip to main content

Advertisement

Log in

Drugs for Increasing Oxygen Transport and Their Potential Use in Doping

A Review

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Blood oxygenation is a fundamental factor in optimising muscular activity. Enhancement of oxygen delivery to tissues is associated with a substantial improvement in athletic performance, particularly in endurance sports. Progress in medical research has led to the identification of new chemicals for the treatment of severe anaemia. Effective and promising molecules have been created and sometimes used for doping purposes. The aim of this review is to present methods, and drugs, known to be (or that might be) used by athletes to increase oxygen transport in an attempt to improve endurance capacity. These methods and drugs include: (i) blood transfusion; (ii) endogenous stimulation of red blood cell production at altitude, or using hypoxic rooms, erythropoietins (EPOs), EPO gene therapy or EPO mimetics; (iii) allosteric effectors of haemoglobin; and (iv) blood substitutes such as modified haemoglobin solutions and perfluorochemicals. Often, new chemicals are used before safety tests have been completed and athletes are taking great health risks. Such new chemicals have also created the need for new instrumental strategies in doping control laboratories, but not all of these chemicals are detectable. Further progress in analytical research is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Table I
Fig. 3
Table II

Similar content being viewed by others

References

  1. Ekblom B, Berglund B. Effect of erythropoietin administration on maximal aerobic power in man. Scand J Med Sci Sports 1991; 1: 88–93

    Article  Google Scholar 

  2. Vandegriff KD. Haemoglobin-based oxygen carriers. Expert Opin Investig Drugs 2000 Sep; 9(9): 1967–84

    Article  PubMed  CAS  Google Scholar 

  3. McCarthy MR, Vandegriff KD, Winslow RM. The role of facilitated diffusion in oxygen transport by cell-free haemoglobins: implications for the design of haemoglobin-based oxygen carriers. Biophys Chem 2001 Aug 30; 92(1–2): 103–7

    Article  PubMed  CAS  Google Scholar 

  4. Stryer L. Biochemistry. 4th ed. New York: WH Freeman and Company, 1995: 159–60

    Google Scholar 

  5. Benesch R, Benesch RE. Intracellular organic phosphates as regulators of oxygen release by haemoglobin. Nature 1969 Feb 15; 221(181): 618–22

    Article  PubMed  CAS  Google Scholar 

  6. Benesch R, Benesch RE, Yu CI. Reciprocal binding of oxygen and diphosphoglycerate by human haemoglobin. Proc Natl Acad Sci 1968 Feb; 59: 526–32

    Article  PubMed  CAS  Google Scholar 

  7. Ekblom B, Goldbarg AN, Gullbring B. Response to exercise after blood loss and reinfusion of red blood cells. J Appl Physiol 1982; 33: 175–80

    Google Scholar 

  8. Ekblom B, Wilson G, Astrand PO. Central circulation during exercise after venesection and reinfusion of red blood cells. J Appl Physiol 1976; 40: 379–83

    PubMed  CAS  Google Scholar 

  9. Buick FJ, Glehill N, Froese AB, et al. Effect of induced erythrocythaemia on aerobic power capacity. J Appl Physiol 1980; 48: 636–42

    PubMed  CAS  Google Scholar 

  10. Kanstrup IL, Ekblom B. Acute hypervolemia, cardiac performance and aerobic power during exercise. J Appl Physiol 1982; 52: 1186–91

    PubMed  CAS  Google Scholar 

  11. Gledhill N. The influence of altered blood volume and oxygen-transport capacity on aerobic performance. Exerc Sport Sci Rev 1985; 13: 75–93

    Article  PubMed  CAS  Google Scholar 

  12. Berglund B, Hemmingsson P, Birgegard G. Detection of autologous blood transfusions in cross-country skiers. Int J Sports Med 1987; 8: 66–70

    Article  PubMed  CAS  Google Scholar 

  13. Ekblom BT. Blood boosting and sport. Baillières Best Pract Res Clin Endocrinol Metab 2000; 14(1): 89–98

    Article  PubMed  CAS  Google Scholar 

  14. Gledhill N. Blood doping and related issues: a brief review. Med Sci Sports Exerc 1982; 14: 183–9

    PubMed  CAS  Google Scholar 

  15. Gledhill N, Warburton D, Jamnick V. Haemoglobin, blood volume, cardiac function, and aerobic power. Can J Appl Physiol 1999; 24: 54–65

    Article  PubMed  CAS  Google Scholar 

  16. Gladwell F, Jopke T. Ethics of blood doping. Phys Sports Med 1985; 13: 145–51

    Google Scholar 

  17. Brien AJ, Simon TL. The effects of red blood cell infusion on 10-km race time. JAMA 1987 May; 257: 2761–5

    Article  PubMed  CAS  Google Scholar 

  18. Klein HG. Blood transfusion and athletics games people play. N Engl J Med 1985 Mar; 312(13): 854–6

    Article  PubMed  CAS  Google Scholar 

  19. Berglund B. Development of techniques for the detection of blood doping in sports. Sports Med 1988 Feb; 5(2): 127–35

    Article  PubMed  CAS  Google Scholar 

  20. d’Onofrio G, Zini G. Addendeum to strategies to deter blood doping in sports [letter]. Haematologica 2002; 87(7): ELT31

    PubMed  Google Scholar 

  21. Jelkmann W, Metzen E. Erythropoietin in the control of red cell production. Ann Anat 1996; 178: 391–403

    Article  PubMed  CAS  Google Scholar 

  22. Ratcliffe PJ, Ebert BL, Ferguson DJ, et al. Regulation of the erythropoietin gene. Nephrol Dial Transplant 1995; 10Suppl. 2: 18–27

    Article  PubMed  Google Scholar 

  23. Goldberg MA, Dunning SP, Bunn HF. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 1998; 242: 1412–5

    Article  Google Scholar 

  24. Beck I, Weinmann R, Caro J. Characterization of the hypoxia-responsive enhancer in the human erythropoietin shows presence of hypoxia-inducible 120 Kd nuclear DNA-binding protein in erythropoietin-producing and nonproducing cells. Blood 1993; 82: 704–11

    PubMed  CAS  Google Scholar 

  25. Nissenson AR. Novel erythropoiesis stimulating protein for managing the anemia of chronic kidney disease. Am J Kidney Dis 2001 Dec; 38(6): 1390–7

    Article  PubMed  CAS  Google Scholar 

  26. Moriya H, Maitani Y, Shimoda N, et al. Pharmacokinetic and pharmacological profiles of free and liposomal recombinant human erythropoietin after intravenous and subcutaneous administrations in rats. Pharm Res 1997; 14(11): 1621–8

    Article  PubMed  CAS  Google Scholar 

  27. Johnson DL, Jolliffe LK. Erythropoietin mimetic peptides and the future. Nephrol Dial Transplant 2000 Dec; 15(9): 1274–7

    Article  PubMed  CAS  Google Scholar 

  28. Kuai L, Wu C, Qiu Q, et al. Plasminogen activator inhibitor-1 fused with erythropoietin (EPO) mimetic peptide (EMP) enhances the EPO activity of EMP. J Pept Res 2000 Aug; 56(2): 59–62

    Article  PubMed  CAS  Google Scholar 

  29. Middleton SA, Barbone FP, Johnson DL, et al. Shared and unique determinants of the erythropoietin (EPO) receptor are important for binding EPO and EPO mimetic peptide. J Biol Chem 1999 May; 274(20): 14163–9

    Article  PubMed  CAS  Google Scholar 

  30. Remy I, Wilson IA, Michnick SW. Erythropoietin receptor activation by a ligand-induced conformation change. Science 1999; 283(5404): 990–3

    Article  PubMed  CAS  Google Scholar 

  31. Samaja M. Hypoxia-dependent protein expression: erythropoietin. High Alt Med Biol 2001; 2: 155–63

    Article  PubMed  CAS  Google Scholar 

  32. Caro J. Hypoxia regulation of gene transcription. High Alt Med Biol 2001; 2: 145–54

    Article  PubMed  CAS  Google Scholar 

  33. Hurtado A. Animals in high altitudes: resident man. Handbook of physiology: adaptation to environment. Washington, DC: American Physiology Society, 1964: 843–60

    Google Scholar 

  34. Bailey MD, Davies B. Physiological implications of altitude training for endurance performance at sea level: a review. Br J Sports Med 1997 Sep; 31(3): 183–90

    Article  PubMed  CAS  Google Scholar 

  35. Beall CM, Blangero J, Williams-Blangero S, et al. Major gene for percent of oxygen saturation of arterial haemoglobin in Tibetan highlanders. Am J Phys Anthropol 1994 Nov; 95(3): 271–6

    Article  PubMed  CAS  Google Scholar 

  36. Boning D, Rojas J, Serrato M, et al. Haemoglobin mass and peak oxygen uptake in untrained and trained residents of moderate altitude. Int J Sports Med 2001; 22: 572–8

    Article  PubMed  CAS  Google Scholar 

  37. Ward MP, Milledge JS, West JB. High altitude medicine and physiology. 2nd ed. London: Chapman and Hall Medical, 1995

    Google Scholar 

  38. Winslow RM, Monge CC. Hypoxia, polycythemia and chronic mountain sickness. Baltimore (MD): John Hopkins University Press, 1987

    Google Scholar 

  39. Milledge JS. High altitude. In: Harries M, Williams C, Stabish W, et al., editors. Oxford textbook of sports medicine. London: Oxford University Press, 1994: 217–30

    Google Scholar 

  40. Levine BD, Stray-Gundersen J. A practical approach to altitude training: where to live and train for optimal performance enhancement. Int J Sports Med 1992; 13Suppl. 1: S209–12

    Article  PubMed  Google Scholar 

  41. Stray-Gundersen J, Levine BD. ‘Living high and training low’ can improve sea level performance in endurance athletes. Br J Sports Med 1999 Jun; 33(3): 150–4

    Article  PubMed  CAS  Google Scholar 

  42. Levine BD, Stray-Gundersen J, Duhaime G, et al. Living high, training low: the effect of altitude acclimatization/normoxic training in trained runners [abstract]. Med Sci Sports Exerc 1991; 23Suppl. 4: 25S

    Google Scholar 

  43. Stray-Gundersen J, Chapman RF, Levine BD. ‘Living high-training low’ altitude training improves sea level performance in male and female elite runners. J Appl Physiol 2001; 91: 1113–20

    PubMed  CAS  Google Scholar 

  44. Geiser J, Vogt M, Billeter R, et al. Training high, living low: changes of aerobic performance and muscle structure with training at simulated altitude. Int J Sports Med 2001 Nov; 22: 579–85

    Article  PubMed  CAS  Google Scholar 

  45. Hoppeler H, Vogt M. Hypoxia training for sea-level performance: training high-living low. Adv Exp Med Biol 2001; 502: 61–73

    PubMed  CAS  Google Scholar 

  46. Levine BD, Stray-Gundersen J. The effects of altitude training are mediated primarily by acclimatization, rather than by hypoxic exercise. Adv Exp Med Biol 2001; 502: 75–88

    PubMed  CAS  Google Scholar 

  47. Dick FW. Training at altitude in practice. Int J Sports Med 1992 Oct; 13: 203–5

    Article  Google Scholar 

  48. Berglund B. High-altitude training: aspects of haematological adaptation. Sports Med 1992 Nov; 14(5): 289–303

    Article  PubMed  CAS  Google Scholar 

  49. Rusko HK, Leppavuori A, Makela P, et al. Living high, training low: a new approach to 48 altitude training at sea level in athletes [abstract]. Med Sci Sports Exerc 1995; 27Suppl. 5: 6S

    Google Scholar 

  50. Wilber RL. Current trends in altitude training. Sports Med 2001; 31: 249–65

    Article  PubMed  CAS  Google Scholar 

  51. Laitinen H, Alopaeus K, Heikkinen R, et al. Acclimatization to living in normobaric hypoxia and training at sea level in runners [abstract]. Med Sci Sports Exerc 1995; 27Suppl. 5: 109S

    Google Scholar 

  52. Mattila V, Rusko H. Effect of living high and training low on sea level performance in cyclists [abstract]. Med Sci Sports Exerc 1996; 28Suppl. 5: 157S

    Google Scholar 

  53. Piehl-Aulin K, Svedenhag J, Wide L, et al. Short-term intermittent normobaric hypoxia-haematological physiological and mental effect. Scand J Med Sci Sports 1998; 8: 132–7

    Article  PubMed  CAS  Google Scholar 

  54. Ashenden MJ, Gore CJ, Dobson GP, et al. Simulated moderate altitude elevates serum erythropoietin but does not increase reticulocyte production in well-trained runners. Eur J Appl Physiol 2000; 81: 428–35

    Article  PubMed  CAS  Google Scholar 

  55. Rodriguez FA, Ventura JL, Casas M, et al. Erythropoietin acute reaction and haematological adaptations to short, intermittent hypobaric hypoxia. Eur J Appl Physiol 2000; 82: 170–7

    Article  PubMed  CAS  Google Scholar 

  56. Nummela A. Acclimatization to altitude and normoxic training improve 400m running performance at sea level. J Sports Sci 2000; 18: 411–9

    Article  PubMed  CAS  Google Scholar 

  57. Ashenden MJ, Gore CJ, Martin DT, et al. Effects of a 12-day ‘live high train low’ camp on reticulocytes production and haemoglobin mass in elite female road cyclists. Eur J Appl Physiol 1999; 80: 472–8

    Article  CAS  Google Scholar 

  58. Ashenden MJ, Gore CJ, Dobson GP, et al. ‘Live high, train low’ does not change the total haemoglobin mass of male endurance athletes sleeping at a simulated altitude of 3000m for 23 nights. Eur J Appl Physiol 1999; 80: 479–84

    Article  CAS  Google Scholar 

  59. Morris DM, Kearney JT, Burke ER. The effects of breathing supplemental oxygen during altitude training on cycling performance. J Sci Med Sport 2000; 3: 165–75

    Article  PubMed  CAS  Google Scholar 

  60. Chick TW, Stark DM, Murata GH. Hyperoxic training increases work capacity after maximal training at moderate altitude. Chest 1993; 104: 1759–62

    Article  PubMed  CAS  Google Scholar 

  61. Knaupp W, Khilmani S, Sherwood J, et al. Erythropoietin response to acute normobaric hypoxia in humans. J Appl Physiol 1992; 73: 837–40

    PubMed  CAS  Google Scholar 

  62. Frey WO, Zenhausern R, Colombani PC, et al. Influence of intermittent exposure to normobaric hypoxia on hematological indexes and exercise performance [abstract]. Med Sci Sports Exerc 2000; 32Suppl. 5: 65S

    Google Scholar 

  63. Terrados N, Melichna J, Sylven C, et al. Effects of training at simulated altitude on performance and muscle metabolic capacity in competitive road cyclists. Eur J Appl Physiol 1988; 57: 203–9

    Article  CAS  Google Scholar 

  64. Meeuwsen T, Hendrksen IJM, Holewijn M, et al. Training-induced increases in sea-level performance is enhanced by acute intermittent hypobaric hypoxia: a 2 year crossover study [abstract]. Med Sci Sports Exerc 2000; 32Suppl. 5: 251S

    Google Scholar 

  65. Berglund B, Gennser M, Ornhagen H, et al. Erythropoietin concentrations during 10 days of normobaric hypoxia under controlled environmental circumstances. Acta Physiol Scand 2002 Mar; 174(3): 225–9

    Article  PubMed  CAS  Google Scholar 

  66. Jacobson LO, Goldwasser E, Fried W, et al. Role of the kidney in erythropoiesis. Nature 1957; 179: 633–4

    Article  PubMed  CAS  Google Scholar 

  67. Fried W. The liver as a source of extrarenal erythropoietin production. Blood 1972; 40: 671–7

    PubMed  CAS  Google Scholar 

  68. Fisher JW. Extrarenal erythropoietin production. J Lab Clin Med 1979; 93: 695–9

    PubMed  CAS  Google Scholar 

  69. Braumann KM, Nonnast-Daniel B, Boning D, et al. Improved physical performance after treatment of renal anaemia with recombinant human erythropoietin. Nephron 1991; 58: 129–34

    Article  PubMed  CAS  Google Scholar 

  70. Horina JH, Schwaverger G, Brassee H, et al. Increased red cell 2,3-diphosphoglycerate levels in haemodialysis patients treated with erythropoietin. Nephrol Dial Transplant 1993; 8: 1219–22

    PubMed  CAS  Google Scholar 

  71. Grunze M, Kohlmann M, Mulligan M, et al. Mechanisms of improved physical performance of chronic haemodialysis patients after erythropoietin treatment. Am J Nephrol 1990; 10Suppl. 2: 15–8

    Article  PubMed  Google Scholar 

  72. Raine AE. Hypertension, blood viscosity, and cardiovascular morbidity in renal failure: implications of erythropoietin therapy. Lancet 1988 Jan 16; I(8577): 97–100

    Article  Google Scholar 

  73. Piron M, Loo M, Gothot A, et al. Cessation of intensive treatment with recombinant human erythropoietin is followed by secondary anemia. Blood 2001 Jan 15; 97(2): 442–8

    Article  PubMed  CAS  Google Scholar 

  74. Casadevall N, Nataf J, Viron B, et al. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. N Engl J Med 2002 Feb 14; 346(7): 469–75

    Article  PubMed  CAS  Google Scholar 

  75. Wide L, Bengtsson C, Berglund B, et al. Detection in blood and urine of recombinant erythropoietin administered to healthy men. Med Sci Sports Exerc 1995; 27: 1569–76

    PubMed  CAS  Google Scholar 

  76. Wilber RL. Detection of DNA-recombinant human epoetin-alfa as a pharmacological ergogenic aid. Sports Med 2002; 32(2): 125–42

    Article  PubMed  Google Scholar 

  77. Parisotto R, Gore CJ, Emslie KR, et al. A novel method utilising markers of altered erythropoiesis for the detection of recombinant human erythropoietin abuse in athletes. Haemato-logica 2000; 85: 564–72

    CAS  Google Scholar 

  78. Parisotto R, Wu M, Ashenden MJ, et al. Detection of recombinant human erythropoietin abuse in athletes utilizing markers of altered erythropoiesis. Haematologica 2001 Feb; 86(2): 128–37

    PubMed  CAS  Google Scholar 

  79. Lasne F. Double-blotting: a solution to the problem of nonspecific binding of secondary antibodies in immunoblotting procedures. J Immunol Methods 2001 Jul 1; 253(1–2): 125–31

    Article  PubMed  CAS  Google Scholar 

  80. Bren A, Kandus A, Varl J, et al. A comparison between epoetin omega and epoetin alfa in the correction of anemia in hemodialysis patients: a prospective, controlled crossover study. Artif Organs 2002 Feb; 26(2): 91–7

    Article  PubMed  CAS  Google Scholar 

  81. Sikole A, Spasovski G, Zafirov D, et al. Epoetin omega for treatment of anaemia in maintenance hemodialysis patients. Clin Nephrol 2002 Mar; 57(3): 237–45

    PubMed  CAS  Google Scholar 

  82. Egrie JC, Grant JR, Gillies DK, et al. The role of carbohydrate on the biological activity of erythropoietin [abstract]. Glycoconj J 1993; 10: 263

    Article  Google Scholar 

  83. Dordal MS, Wang FF, Goldwasser E. The role of carbohydrate in erythropoietin action. Endocrinology 1985; 116: 2293–9

    Article  PubMed  CAS  Google Scholar 

  84. Egrie JC, Browne JK. Development and characterization of novel erythropoiesis stimulating protein (NESP). Nephrol Dial Transplant 2001; 16 (3 Suppl.): 3–13

    Article  PubMed  Google Scholar 

  85. Ibbotson T, Goa KL. Darbepoietin alfa. Drags 2001; 61(14): 2097–104

    Article  CAS  Google Scholar 

  86. Macdougall IC, Gray SJ, Elston O, et al. Pharmacokinetics of novel erythropoiesis stimulating protein compared with epoetin alfa in dialysis patients. J Am Soc Nephrol 1999; 10: 2392–5

    PubMed  CAS  Google Scholar 

  87. Korbett SM. Anemia and erythropoietin in hemodialysis and continuous ambulatory peritoneal dialysis. Kidney Int 1993; 43: 111–9

    Google Scholar 

  88. Vanrenterghem Y, Barany P, Mann J, et al. Novel erythropoiesis stimulating protein (NESP) maintains haemoglobin (Hgb) in ESRD patients with administered once weekly or once every other week [abstract]. J Am Soc Nephrol 1999; 10: 1365A

    Google Scholar 

  89. Coyne D, Ling ND, Toto R, et al. Novel erythropoiesis stimulating protein (NESP) corrects anemia in dialysis patients when administered at a reduced dose frequency compared with recombinant-human erythropoietin (r-HuEpo) [abstract]. J Am Soc Nephrol 2000; 11: 1380A

    Google Scholar 

  90. Graf H, Lacombe JL, Braun J, et al. Novel erythropoiesis stimulating protein (NESP) effectively maintains haemoglobin (Hgb) when administered at a reduced dose frequency compared with recombinant-human erythropoietin (r-HuEpo) in dialysis patients [abstract]. J Am Soc Nephrol 2000; 11: 1317A

    Google Scholar 

  91. Amgen Inc. Aranesp® physician package insert. California: 2001

  92. Macdougall IC. An overview of the efficacy and safety of novel erythropoiesis stimulating protein (NESP). Nephrol Dial Transplant 2001; 16Suppl. 3: 14–21

    Article  PubMed  CAS  Google Scholar 

  93. Clarey C. In the arena: no bronze, silver or gold: an obvious answer to drug users [online]. Herald Tribune 2002 Mar 22. Available from URL: http://www.iht.com/ihtsearch.php?id=52056&owner=(International%20Herald%20Tribune)&date=00000000000000 [Accessed 2003 Jan 8]

    Google Scholar 

  94. De Bree F. Genomics-based drugs in R&D the promise of a new era [online]. Genomics Based Drugs Data Rep Regen Ther 2001; 1(1): 5–19. Available from URL: www.prous.com/journals/gddr/sample/html/gddr010005/gddr010005.html [Accessed 2002 Sep 10]

    Google Scholar 

  95. Kedar E, Rutkowski Y, Braun E, et al. Delivery of cytokines by liposomes: I, preparation and characterization of interleukin-2 encapsulated in long-circulating sterically stabilized liposomes. J Immunother Emphasis Tumor Immunol 1994; 16: 47–59

    Article  PubMed  CAS  Google Scholar 

  96. Qi XR, Maitani Y, Shimoda N, et al. Evaluation of liposomal erythropoietin prepared with reverse-phase evaporation vesicle method by subcutaneous administration in rats. Chem Pharm Bull (Tokyo) 1995; 43(2): 295–9

    Article  CAS  Google Scholar 

  97. Maitani Y, Hazama M, Tojo Y, et al. Oral administration of recombinant human erythropoietin in liposomes in rats: influence of lipid composition and size of liposomes on bioavailability. J Pharm Sci 1996 Apr; 85: 440–5

    Article  PubMed  CAS  Google Scholar 

  98. Maitani Y, Moriya H, Shimoda N, et al. Distribution characteristics of entrapped recombinant human erythropoietin in liposomes and its intestinal absorption in rats. Int J Pharm 1999 Aug; 185: 13–22

    Article  PubMed  CAS  Google Scholar 

  99. Regulier E, Schneider BL, Deglon N, et al. Continuous delivery of human and mouse erythropoietin in mice by genetically engineered polymer encapsulated myoblasts. Gene Ther 1998 Aug; 5(8): 1014–22

    Article  PubMed  CAS  Google Scholar 

  100. Dalle B, Payen E, Regulier R, et al. Improvement of mouse-thalassemia upon erythropoietin delivery by encapsulated myoblasts. Gene Ther 1999 Feb; 6(2): 157–61

    Article  PubMed  CAS  Google Scholar 

  101. Serguera C, Bohl D, Rolland E, et al. Control of erythropoietin secretion by doxycycline or mifeprostone in mice bearing polymer-encapsulated engineered cell. Hum Gene Ther 1999; 10(3): 375–83

    Article  PubMed  CAS  Google Scholar 

  102. Swiss National Science Fondation Adieu la Seringue, voici les implants [online]. Available from URL: www.snf.ch/fr/com/prr/prr_cur_marl9.asp [Accessed 2003 Jan 8]

  103. Kessler P, Podsakoff G, Chen X, et al. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci U S A 1996 Nov; 93: 14082–7

    Article  PubMed  CAS  Google Scholar 

  104. Zhou S, Murphy JE, Escobedo JA, et al. Adeno-associated virus-mediated delivery of erythropoietin leads to sustained elevation of hematocrit in nonhuman primates. Gene Ther 1998; 5: 665–70

    Article  PubMed  CAS  Google Scholar 

  105. Osborne WRA, Ramesh N, Lau S, et al. Gene therapy for long-term expression of erythropoietin in rats. Proc Natl Acad Sci USA 1995; 92: 8055–8

    Article  PubMed  CAS  Google Scholar 

  106. Bohl D, Naffakh N, Heard JM. Long term control of erythropoietin secretion levels by tetracycline in mice transplanted with engineered primary myoblasts. Nat Med 1997; 3: 299–312

    Article  PubMed  CAS  Google Scholar 

  107. Rinsch C, Regulier E, Deglon N, et al. A gene therapy approach to regulated delivery of erythropoietin as a function of oxygen tension. Hum Gene Ther 1997 Nov 1; 8(16): 1881–9

    Article  PubMed  CAS  Google Scholar 

  108. Bohl D, Salvetti A, Moullier PH, et al. Control of erythropoietin delivery by doxycycline in mice after intramuscular injection of adeno-associated vector. Blood 1998; 92: 1512–7

    PubMed  CAS  Google Scholar 

  109. Clakson T. Regulated gene expression systems. Gene Ther 2000; 7: 120–5

    Article  CAS  Google Scholar 

  110. Ye X, Rivera VM, Zoltick P, et al. Regulated delivery of therapeutic proteins after in vivo somatic cell gene transfer. Science 1999 Jan 1; 283(5398): 88–91

    Article  PubMed  CAS  Google Scholar 

  111. Abruzzese RV, Godin D, Mehta V, et al. Ligand-dependent regulation of vascular endothelial growth factor and erythropoietin expression by a plasmid-based autoinducible GeneS-witch system. Mol Ther 2000; 2: 276–87

    Article  PubMed  CAS  Google Scholar 

  112. Adam D. Gene therapy may be up to speed for cheats at 2008 Olympics. Nature 2001 Dec 6; 414: 569–70

    Article  PubMed  CAS  Google Scholar 

  113. Friedmann T, Koss JO. Gene transfer and athletics: an impending problem. Mol Ther 2001 Jun; 3(6): 819–20

    Article  PubMed  CAS  Google Scholar 

  114. Sommer B, Rinsch C, Payen E, et al. Long-term doxycycline-regulated secretion of erythropoietin by encapsulated myoblasts. Mol Ther 2002 Aug; 6(2): 155–61

    Article  PubMed  CAS  Google Scholar 

  115. Repoxygem. Fact sheet. Available from URL: www.asda.org.au/resources/Repoxygen1.pdf [Accessed 2003 Jan 17]

  116. Jolliffe LK, Middleton SA, Barbone FB, et al. Erythropoietin receptor: application in drug development. Nephrol Dial Transplant 1995; 10Suppl. 2: 80–4

    Google Scholar 

  117. Boulay JL, Paul WE. Haematopoietin sub-family classification based on size, gene organization and sequence homology. Curr Biol 1993; 3: 573–81

    Article  PubMed  CAS  Google Scholar 

  118. Bazan JF. Structural design and molecular evaluation of a cytokine receptor superfamily. Proc Natl Acad Sci U S A 1990; 87: 6934–8

    Article  PubMed  CAS  Google Scholar 

  119. Darnell JE, Kerr IA, Starck GR. Jak-STAT pathways and transcriptional activation in response to IFNa and other extracellular signalling proteins. Science 1994; 264: 383–6

    Article  Google Scholar 

  120. Wells JA. Hormone mimicry. Science 1996; 273: 449–50

    Article  PubMed  CAS  Google Scholar 

  121. Wrighton NC, Farrell FX, Chang R, et al. Small peptides as potent mimetics of the protein hormone erythropoietin. Science 1996; 273: 458–63

    Article  PubMed  CAS  Google Scholar 

  122. Livnah O, Stura EA, Johnson DL, et al. Functional mimicry of a protein hormone by a peptide agonist: the Epo receptor complex at 2.8 Å. Science 1996; 273: 464–71

    Article  PubMed  CAS  Google Scholar 

  123. Constantinescu SN, Ghaffari S, Lodish HF. The erythropoietin receptor: structure, activation and intracellular signal transduction. Trends Endocrinol Metab 1999; 10(1): 18–23

    Article  PubMed  CAS  Google Scholar 

  124. Caravella JA, Lyne PD, Richards WG. A partial model of the erythropoietin receptor complex. Proteins 1996; 24: 394–401

    Article  PubMed  CAS  Google Scholar 

  125. Barbone FP, Middleton SA, Johnson DL, et al. Mutagenesis studies of the human erythropoietin receptor. J Biol Chem 1997; 272(8): 4985–92

    Article  PubMed  CAS  Google Scholar 

  126. Wrighton NC, Balasubramanian P, Barbone FP, et al. Increased potency of an erythropoietin peptide mimetic through covalent dimerization. Nat Biotech 1997; 15: 1261–5

    Article  CAS  Google Scholar 

  127. Livnah O, Johnson DL, Stura EA, et al. An antagonist peptide-Epo receptor complex suggests that receptor dimerization is not sufficient for activation. Nat Struct Biol 1998; 5: 993–1003

    Article  PubMed  CAS  Google Scholar 

  128. Ballinger MD, Wells JA. Will any dimmer do? Nat Struct Biol 1998; 5(11): 938–40

    Article  PubMed  CAS  Google Scholar 

  129. Johnson DL, Farrell FX, Barbone FP, et al. Amino terminal dimerization of an erythropoietin mimetic peptide results in increased erythropoietic activity. Chem Biol 1997; 4: 939–50

    Article  PubMed  CAS  Google Scholar 

  130. McConnell SJ, Dinh T, Le MH, et al. Isolation of erythropoietin receptor agonist peptides using evolved phage libraries. Biol Chem 1998; 379: 1279–86

    Article  PubMed  CAS  Google Scholar 

  131. Naranda T, Wong K, Kaufman RI, et al. Activation of erythropoietin receptor in the absence of hormone by a peptide that binds to a domain different from the hormone binding site. Proc Natl Acad Sci U S A 1999; 96: 7569–74

    Article  PubMed  CAS  Google Scholar 

  132. Elliot S, Lorenzini T, Yanaghira D, et al. Activation of the erythropoietin (EPO) receptor by bivalent t anti-Epo receptor antibodies. J Biol Chem 1996; 271: 24691–7

    Article  Google Scholar 

  133. Schneider H, Chaovapong W, Matthews DJ, et al. Homodimerization of erythropoietin receptor by bivalent monoclonal antibody triggers cell proliferation and differentiation of erythroid precursors. Blood 1997 Jan; 89(2): 473–82

    PubMed  CAS  Google Scholar 

  134. Yoshimura A, Longmore G, Lodish HF. Point mutation in the exoplasmic domain of the erythropoietin receptor resulting in hormone-independent activation and tumorigenicity. Nature 1994; 348: 647–9

    Article  Google Scholar 

  135. Watowich Y, Yoshimura A, Longmore GD, et al. Homodimerization and constitutive activation of the erythropoietin receptor. Proc Natl Acad Sci U S A 1992; 89: 2140–5

    Article  PubMed  CAS  Google Scholar 

  136. Watowich Y, Hilton DS, Lodish HF. Activation and inhibition of erythropoietin receptor function: role of receptor dimerization. Mol Cell Biol 1994; 14: 3535–49

    PubMed  CAS  Google Scholar 

  137. Li JP, D’Andrea AD, Lodish HF, et al. Activation of cell growth by binding of Friend Spleen focus forming gp55 glycoprotein to the erythropoietin receptor. Nature 1990; 343: 762–4

    Article  PubMed  CAS  Google Scholar 

  138. Qureshi SA, Kim RM, Konteatis Z, et al. Mimicry of erythropoietin by a nonpeptide molecule. Proc Natl Acad Sci U S A 1999; 96(21): 12156–61

    Article  PubMed  CAS  Google Scholar 

  139. Navia MA, Chatturvedi PR. Design principles for orally bioavailable drugs. Drug Disc Today 1996; 1: 179–89

    Article  CAS  Google Scholar 

  140. Barbone FP, Johnson DL, Farrell FX, et al. New epoietin molecules and novel therapeutic approaches. Nephrol Dial Transplant 1999; 14(2): 80–4

    Article  PubMed  CAS  Google Scholar 

  141. Abraham DJ, Wireko FC, Randad RS, et al. Allosteric modifiers of hemoglobin: 2-[4-[(3,5-Disubstituted anilino)carbonyl]-methylphenoxy]-2-methylpropionic acid derivatives that lower whole blood, and in vivo in rats. Biochemistry 1992; 31: 9141–9

    Article  PubMed  CAS  Google Scholar 

  142. Perutz MF, Poyart C. Bezafibrate lowers oxygen affinity of haemoglobin. Lancet 1983; II: 881–2

    Article  Google Scholar 

  143. Lalezeri I, Rahbar S, Lalezeri P, et al. LR16, a compound with potent effects on the oxygen affinity of haemoglobin on blood cholesterol and on low density lipoprotein. Proc Natl Acad Sci U S A 1988 Aug; 85: 6117–21

    Article  Google Scholar 

  144. Lalezari I, Lalezari P, Poyart C, et al. New effectors of human hemoglobin: structure and function. Biochemistry 1990 Feb; 29: 1515–23

    Article  PubMed  CAS  Google Scholar 

  145. Randad RS, Mahran MA, Mehanna AS, et al. Allosteric modifiers of haemoglobin design, synthesis, testing and structure-allosteric activity relationship of novel haemoglobin oxygen affinity decreasing agents. J Med Chem 1991; 34: 752–7

    Article  PubMed  CAS  Google Scholar 

  146. Uchida K, Reilly MP, Abraham DJ, et al. Effect of an allosteric modifier of haemoglobin, RSR-4, on oxygen affinity and oxygen saturation of haemoglobin in rabbits. Jpn J Physiol 1998; 48: 439–44

    Article  PubMed  CAS  Google Scholar 

  147. Wahr JA, Gerber M, Venitz J, et al. Allosteric modification of oxygen delivery by haemoglobin. Anesth Analg 2001; 92: 615–20

    Article  PubMed  CAS  Google Scholar 

  148. Kleinberg L, Grossman SA, Piantadosi S, et al. Phase I trial to determine the safety, pharmacodynamics, and pharmacokinetics of RSR13, a novel radioenhancer, in newly diagnosed glioblastoma multiforme. J Clin Oncol 1999; 17(8): 2593–603

    PubMed  CAS  Google Scholar 

  149. Eichelbronner O, Sielenkamper A, D’Almeida M, et al. Effects of FI (O (2)) on hemodynamic responses and O (2) transport during RSR13-induced reduction in P (50). Am J Physiol 1999 Jul; 277 (1 Pt 2): 290H–8H

    Google Scholar 

  150. Phelps Grella M, Danso-Danquah R, Safo MK, et al. Synthesis and structure-activity relationships of chiral allosteric modifiers of hemoglobin. J Med Chem 2000; 43: 4726–37

    Article  PubMed  CAS  Google Scholar 

  151. Youssef AM, Safo KM, Danso-Danquah R, et al. Synthesis and X-ray studies of chiral allosteric modifiers of hemoglobin. J Med Chem 2002; 45: 1184–95

    Article  PubMed  CAS  Google Scholar 

  152. Breidbach A, Catlin DH. RSR13, a potential athletic performance enhancement agent: detection in urine by gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 2001; 15(24): 2378–82

    Article  CAS  Google Scholar 

  153. Richardson RS, Tagore K, Haseler LJ, et al. Increased VO2max with right-shifted Hb-O2 dissociation curve at a constant O2 delivery in dog muscle in situ. J Appl Physiol 1998; 84(3): 995–1002

    PubMed  CAS  Google Scholar 

  154. Amberson WR, Flexner J, Steggerda FR, et al. On the use of Ringer-Locke solutions containing haemoglobin as a substitute for normal blood in mammals. J Cell Comp Physiol 1934; 5: 359–82

    Article  CAS  Google Scholar 

  155. Amberson WR, Jennings JJ, Rhode CM. Clinical experience with haemoglobin-saline solutions. J Appl Physiol 1949; 1: 469–89

    PubMed  CAS  Google Scholar 

  156. Bunn HF. Subunit dissociation of certain abnormal human haemoglobins. J Clin Invest 1969; 48: 126–38

    Article  PubMed  CAS  Google Scholar 

  157. Mok W, Chen DE, Mazur A. Cross-linked haemoglobins as potential plasma protein extenders. Fed Proc 1975; 34: 1458–60

    PubMed  CAS  Google Scholar 

  158. Przybelski RJ, Daily EK, Kisicki JC, et al. Phase I study of the safety and pharmacologic effects of diaspirin cross-linked haemoglobin solution. Crit Care Med 1996; 24(12): 1993–2000

    Article  PubMed  CAS  Google Scholar 

  159. Sloan EP, Koenisberg M, Gens D, et al. Diaspirin cross-linked haemoglobin (DCLHb) in the treatment of severe traumatic hemorrhagic shock. JAMA 1999; 282: 1857–64

    Article  PubMed  CAS  Google Scholar 

  160. Winslow RM. Blood substitutes. Curr Opin Hematol 2002; 9: 146–51

    Article  PubMed  Google Scholar 

  161. Lee R, Atsumi N, Jacobs EE, et al. Ultrapure, stroma-free, polymerised bovine haemoglobin solution: evaluation of renal toxicity. J Surg Res 1989; 47: 407–11

    Article  PubMed  CAS  Google Scholar 

  162. Hill SE. Oxygen therapeutics: current concepts. Can J Anaesth 2001; 48 (4 Suppl.): 32–40

    Google Scholar 

  163. Sanders KE, Ackers G, Sligar S. Engineering and design of blood substitutes. Curr Opin Struct Biol 1996; 6: 534–40

    Article  PubMed  CAS  Google Scholar 

  164. Jia L, Bonaventura C, Bonaventura J, et al. S-ni-trosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 1996; 380: 221–6

    Article  PubMed  CAS  Google Scholar 

  165. Privalle C, Talarico T, Keng T, et al. Pyridoxalated haemoglobin polyoxyethylene: a nitric oxide scavenger with antioxidant activity for the treatment of nitric oxide-induced shock. Free Radic Biol Med 2000; 28(10): 1507–17

    Article  PubMed  CAS  Google Scholar 

  166. D’Agnillo F, Chang TMS. Polyhemoglobin-superoxide dismutase-catalase as a blood substitute with antioxidant properties. Nat Biotech 1998; 16: 667–71

    Article  Google Scholar 

  167. Kluger R, Wodzinska J, Jones RT, et al. Three-point cross-linking potential red cell substitutes from the reaction of trimesoyl tris (methylphosphate) with hemoglobin. Biochemistry 1992 Aug; 31: 7551–9

    Article  PubMed  CAS  Google Scholar 

  168. Bucci E, Razynska A, Kwansa H, et al. Production and characteristics of an infusible oxygen-carrying fluid based on hemoglobin intramolecularly cross-linked with sebaci acid. J Lab Clin Med 1996 Aug; 128(2): 146–53

    Article  PubMed  CAS  Google Scholar 

  169. Buehler PW, Mehendale S, Wang H, et al. Resuscitative effects of polynitroxylated α-cross-linked haemoglobin following severe hemorrhage in the rat. Free Radic Biol Med 2000; 29(8): 764–74

    Article  PubMed  CAS  Google Scholar 

  170. Nakai K, Togashi H, Yasukohchi T, et al. Preparation and characterization of SNO-PEG-haemoglobin as a candidate for oxygen transporting material. Int J Artif Organs 2001; 24: 322–8

    PubMed  CAS  Google Scholar 

  171. Marden MC, Kiger L, Poyart C, et al. Modulation of the oxygen affinity of cobalt-porphyrin by globin. FEBS Lett 2000; 472: 221–4

    Article  PubMed  CAS  Google Scholar 

  172. Doherty DH, Doyle MP, Curry SR, et al. Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Nat Biotech 1998 Jul; 16(7): 672–6

    Article  CAS  Google Scholar 

  173. Kumar R, Manjula BN. Red cell substitutes: basic principles and clinical application. In: Rudolph AS, Rabinovici R, Feuerstein GZ, editors. New York: Marcel Dekker, 1997: 309–24

  174. Dieryck W, Pagnier J, Poyart C, et al. Human haemoglobin from transgenic tobacco. Nature 1997 Mar; 386(6620): 29–30

    Article  PubMed  CAS  Google Scholar 

  175. Komiyama N, Tame J, Nagai K. A hemoglobin-based blood substitute: transplanting a novel allosteric effect of crocodile Hb. Biol Chem 1996 Sep; 377: 543–8

    PubMed  CAS  Google Scholar 

  176. Chang TMS. Future prospects for artificial blood. Trends Tech 1999; 17: 61–7

    CAS  Google Scholar 

  177. Djordevich L, Ivankovich AD. Progress in development of synthetic erythrocytes made by encapsulation of haemoglobin. Adv Exp Med Biol 1988; 238: 171–97

    Article  Google Scholar 

  178. Rabinovici R, Rudolph AS, Feuerstein G. Characterization of hemodynamic, hematologic, and biochemical responses to administration of liposome-encapsulated haemoglobin in the conscious, free moving rat. Circ Shock 1989; 29: 115–32

    PubMed  CAS  Google Scholar 

  179. Sakai H, Tsai AG, Rohlfs RJ, et al. Microvascular responses to hemodilution with Hb vesicles as red blood cell substitutes: influence of O2 affinity. Am J Physiol 1999 Feb; 276 (2 Pt 2): 553–62H

    Google Scholar 

  180. Usuba A, Motoki R, Miyauchi Y, et al. Effect of neo red cells on the canine hemorrhagic shock model. Int J Artif Organs 1994; 14: 739–44

    Google Scholar 

  181. Rabinovici R, Rudolph AS, Vernick J, et al. A new salutary resuscitative fluid: liposome encapsulated haemoglobin/hyper-tonic saline solution. J Trauma 1993; 35: 121–6

    Article  PubMed  CAS  Google Scholar 

  182. Farmer MC, Johnson SA, Beissinger RL, et al. Liposome-encapsulated haemoglobin: a synthetic red cell. Adv Exp Med Biol 1988; 238: 161–70

    Article  PubMed  CAS  Google Scholar 

  183. Tsuchida E. Synthesis and characterization of artificial red cell (ARC). Biomater Artif Cells Immobilization Biotechnol 1992; 20(2–4): 337–44

    PubMed  CAS  Google Scholar 

  184. Dietz NM, Joyner MJ, Warner MA. Blood substitutes: fluids, drugs, or miracles solutions? Anesth Analg 1996; 82: 390–405

    PubMed  CAS  Google Scholar 

  185. Szebeni J, Fontana JL, Wassef NM, et al. Hemodynamic changes induced by liposomes and liposome-encapsulated haemoglobin in pigs: a model for pseudoallergic cardiopulmonary reactions to liposomes, role of complement and inhibition by soluble CR1 and anti-C5a antibody. Circulation 1999; 99: 2302–9

    Article  PubMed  CAS  Google Scholar 

  186. Chang TMS, Yu WP. Nanoencapsulation of haemoglobin and red blood cell enzymes based on nanotechnology and biodegradable polymer. In: Chang TMS, editor. Blood substitutes: principles, methods, products and clinical trials. Basel: Karger AG, 2000: 216–31

    Google Scholar 

  187. Haney CR, Buehler PW, Gutil A. Purification and chemical modifications of haemoglobin in developing based oxygen carriers. Adv Drug Deliv Rev 2000 Feb 28; 40(3): 153–69

    Article  PubMed  CAS  Google Scholar 

  188. Carmichael FJ. Recent developments in haemoglobin-based oxygen carriers: an update on clinicals trials. Transfus Apheresis Sci 2001 Feb; 24(1): 17–21

    Article  CAS  Google Scholar 

  189. Hughes Jr GS, Yancey EY, Albrecht R, et al. Haemoglobin-based oxygen carrier preserves submaximal exercise capacity in humans. Clin Pharmacol Ther 1995; 58(4): 434–43

    Article  PubMed  CAS  Google Scholar 

  190. Riess JG. Fluorocarbon-based in vivo oxygen transport and delivery systems. Vox Sang 1991; 61: 225–39

    Article  PubMed  CAS  Google Scholar 

  191. Grote G, Steur K, Muller R, et al. O2 and CO2 solubility of the fluorocarbon emulsion Fluosol-DA 20% and O2 and CO2 dissociates curves of blood Fluosol-DA 20% mixtures. Adv Exp Med Biol 1985; 191: 453–61

    Article  PubMed  CAS  Google Scholar 

  192. Habler O, Kleen M, Messmer K. Clinical potential of intravenously administered perfluorocarbons. Acta Anaesthesiol Scand Suppl 1997; 111: 256–8

    PubMed  CAS  Google Scholar 

  193. Sakas DE, Whittaker KW, Crowell RM, et al. Perfluorocarbons: recent developments and implications for neurosurgery. J Neurosurg 1996; 85: 248–54

    Article  PubMed  CAS  Google Scholar 

  194. Kaufman RJ. Clinical development of perfluorocarbon-based emulsions are red cell substitutes. In: Winslow RM, Vandergriff KD, Intaglietta M, editors. Blood substitutes: physiological basis of efficacy. Boston (MA): Birkhauser, 1995: 53–75

    Chapter  Google Scholar 

  195. Goodnough LT, Scott MG, Monk TG. Oxygen carriers as blood substitutes. Clin Orthop 1998; 357: 89–100

    Article  PubMed  Google Scholar 

  196. Faithfull NS. Mechanisms and efficacy of fluorochemical oxygen transport and delivery. Artif Cells Blood Substit Immobil Biotechnol 1994; 22(2): 181–97

    Article  PubMed  CAS  Google Scholar 

  197. Mitten RM, Burgan AR, Hamblin A, et al. Dose related biodistribution and elimination of 100% PFOB emulsion. Biomater Artif Cells Artif Organs 1988; 16(1–3): 683–4

    Google Scholar 

  198. Audran M, Krafft MP, De Ceaurriz J, et al. Assay method for the perfluorooctyl bromide (perflubron) in rat blood by gas chromatography-mass spectrometry. J Chromatogr B Biomed Sci Appl 1999 Aug; 734(2): 267–76

    Article  PubMed  CAS  Google Scholar 

  199. Audran M, Krafft MP, De Ceaurriz J, et al. Determination of perfluorodecalin and perfluoro-N-methylcyclohexylpiperidine in rat blood by gas chromatography-mass spectrometry. J Chromatogr B Biomed Sci Appl 2000; 745: 333–43

    Article  PubMed  CAS  Google Scholar 

  200. Rivier L. The doping products of tomorrow. Ann Toxicol Analytique 2000; 12(1): 79–89

    Article  Google Scholar 

  201. Mathurin JC, De Ceaurriz J, Audran M, et al. Detection of perfluorocarbons in blood by headspace solid-phase microextraction combined with gas chromatography/mass spectrometry. Biomed Chromatogr 2001; 15(7): 443–51

    Article  PubMed  CAS  Google Scholar 

  202. Schumacher YO, Schmid A, Dinkelmann S, et al. Artificial oxygen carriers: the new doping threat in endurance sport? Int J Sports Med 2001; 22: 566–71

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors have provided no information on sources of funding or on conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francoise Bressolle.

Additional information

Gaudard and Varlet-Marie have equally contributed to this work and should both be considered as first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaudard, A., Varlet-Marie, E., Bressolle, F. et al. Drugs for Increasing Oxygen Transport and Their Potential Use in Doping. Sports Med 33, 187–212 (2003). https://doi.org/10.2165/00007256-200333030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200333030-00003

Keywords

Navigation