Skip to main content
Log in

Huntington’s Disease

  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Huntington’s disease (HD) research is aimed at understanding the root cause of the disorder, for the thrill of uncovering new biology, and for the serious purpose of finding effective therapeutic agents. Molecular genetics has revealed the disease trigger, an inherited unstable CAG expansion in a novel 4p16.3 gene (HD), that lengthens a polyglutamine segment in huntingtin. Now studies with HD patients and model systems that are genetic HD replicas are homing in on the trigger mechanism and the first formative steps that cast HD as a distinct clinical entity. At the same time, assays at the biochemical, cellular, and whole organism levels are starting to yield potential disease modifying genes and candidate drugs. These can be prioritized by testing in a panel of genetic and phenotypic HD mouse models to yield analytical tools for dissecting the early and late stages of the disease process and to maximize the chance of success in trials with HD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albin R. L. and Greenamyre J. T. (1992) Alternative excitotoxic hypotheses. Neurology 42, 733–738.

    PubMed  CAS  Google Scholar 

  • Andrade M. A., Petosa C., O’Donoghue S. I., Muller C. W., and Bork P. (2001) Comparison of ARM and HEAT protein repeats. J. Mol. Biol. 309, 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Andreassen O. A., Ferrante R. J., Dedeoglu A., and Beal M. F. (2001) Lipoic acid improves survival in transgenic mouse models of Huntington’s disease. Neuroreport 12, 3371–3373.

    Article  PubMed  CAS  Google Scholar 

  • Berke S. J. and Paulson H. L. (2003) Protein aggregation and the ubiquitin proteasome pathway: gaining the UPPer hand on neurodegeneration. Curr. Opin. Genet. Dev. 13, 253–261.

    Article  PubMed  CAS  Google Scholar 

  • Chan E. Y., Luthi-Carter R., Strand A., et al. (2002) Increased huntingtin protein length reduces the number of polyglutamine-induced gene expression changes in mouse models of Huntington’s disease. Hum. Mol. Genet. 11, 1939–1951.

    Article  PubMed  CAS  Google Scholar 

  • Chen M., Ona V. O., Li M., et al. (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat. Med. 6, 797–801.

    Article  PubMed  CAS  Google Scholar 

  • Chen S., Ferrone F. A., and Wetzel R. (2002) Huntington’s disease age-of-onset linked to polyglutamine aggregation nucleation. Proc. Natl. Acad. Sci. USA 99, 11884–11889.

    Article  PubMed  CAS  Google Scholar 

  • Davies S. W., Turmaine M., Cozens B. A., et al. (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548.

    Article  PubMed  CAS  Google Scholar 

  • Dedeoglu A., Kubilus J. K., Yang L., et al. (2003) Creatine therapy provides neuroprotection after onset of clinical symptoms in Huntington’s disease transgenic mice. J. Neurochem. 85, 1359–1367.

    Article  PubMed  CAS  Google Scholar 

  • De Rooij K. E., Dorsman J. C., Smoor M. A., Den Dunnen J. T., and Van Ommen G. J. (1996) Subcellular localization of the Huntington’s disease gene product in cell lines by immunofluorescence and biochemical subcellular fractionation. Hum. Mol. Genet. 5, 1093–1099.

    Article  PubMed  Google Scholar 

  • Dragatsis I., Levine M. S., and Zeitlin S. (2000) Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat. Genet. 26, 300–306.

    Article  PubMed  CAS  Google Scholar 

  • Duan W., Guo Z., Jiang H., et al. (2003) Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc. Natl. Acad. Sci. USA 100, 2911–2916.

    Article  PubMed  CAS  Google Scholar 

  • Duyao M. P., Auerbach A. B., Ryan A., et al. (1995) Inactivation of the mouse Huntington’s disease gene homolog Hdh. Science 269, 407–410.

    Article  PubMed  CAS  Google Scholar 

  • Ferrante R. J., Andreassen O. A., Dedeoglu A., et al. (2002) Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington’s disease. J. Neurosci. 22, 1592–1599.

    PubMed  CAS  Google Scholar 

  • Fossale E., Wheeler V. C., Vrbanac V., et al. (2002) Identification of a presymptomatic molecular phenotype in Hdh CAG knock-in mice. Hum. Mol. Genet. 11, 2233–2241.

    Article  PubMed  CAS  Google Scholar 

  • Friedlander R. M. (2003) Apoptosis and caspases in neurodegenerative diseases. N. Engl. J. Med. 348, 1365–1375.

    Article  PubMed  CAS  Google Scholar 

  • Gafni J. and Ellerby L. M. (2002) Calpain activation in Huntington’s disease. J. Neurosci. 22, 4842–4849.

    PubMed  CAS  Google Scholar 

  • Gines S., Seong I. S., Fossale E., et al. (2003) Specific progressive cAMP reduction implicates energy deficit in presymptomatic Huntington’s disease knock-in mice. Hum. Mol. Genet. 12, 497–508.

    Article  PubMed  CAS  Google Scholar 

  • Gusella J. and MacDonald M. (2002) No post-genetics era in human disease research. Nat. Rev. Genet. 3, 72–79.

    Article  PubMed  CAS  Google Scholar 

  • Gusella J. F. and MacDonald M. E. (2000) Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nat. Rev. Neurosci. 1, 109–115.

    Article  PubMed  CAS  Google Scholar 

  • HDCRG (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983.

    Article  Google Scholar 

  • Heiser V., Scherzinger E., Boeddrich A., et al. (2000) Inhibition of huntingtin fibrillogenesis by specific antibodies and small molecules: implications for Huntington’s disease therapy. Proc. Natl. Acad. Sci. USA 97, 6739–6744.

    Article  PubMed  CAS  Google Scholar 

  • Hilditch-Maguire P., Trettel F., Passani L. A., et al. (2000) Huntingtin: an iron-regulated protein essential for normal nuclear and perinuclear organelles. Hum. Mol. Genet. 9, 2789–2797.

    Article  PubMed  CAS  Google Scholar 

  • Hockly E., Cordery P. M., Woodman B., et al. (2002) Environmental enrichment slows disease progression in R6/2 Huntington’s disease mice. Ann. Neurol. 51, 235–242.

    Article  PubMed  Google Scholar 

  • Hockly E., Richon V. M., Woodman B., et al. (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc. Natl. Acad. Sci. USA 100, 2041–2046.

    Article  PubMed  CAS  Google Scholar 

  • Huang C. C., Faber P. W., Persichetti F., et al. (1998) Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins. Somat. Cell Mol. Genet. 24, 217–233.

    Article  PubMed  CAS  Google Scholar 

  • Jones L. (2000) Huntington-interacting proteins and their relevance to Huntington’s disease etiology. NeuroSci. News 3, 55–63.

    CAS  Google Scholar 

  • Karpuj M. V., Becher M. W., and Steinman L. (2002) Evidence for a role for transglutaminase in Huntington’s disease and the potential therapeutic implications. Neurochem. Int. 40, 31–36.

    Article  PubMed  CAS  Google Scholar 

  • Keene C. D., Rodrigues C. M., Eich T., et al. (2002) Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington’s disease. Proc. Natl. Acad. Sci. USA 99, 10671–10676.

    Article  PubMed  CAS  Google Scholar 

  • Kegel K. B., Meloni A. R., Yi Y., et al. (2002) Huntingtin is present in the nucleus, interacts with the transcriptional corepressor C-terminal binding protein, and represses transcription. J. Biol. Chem. 277, 7466–7476.

    Article  PubMed  CAS  Google Scholar 

  • Kehoe P., Krawczak M., Harper P. S., Owen M. J., and Jones A. L. (1999) Age of onset in Huntington disease: sex specific influence of apolipoprotein E genotype and normal CAG repeat length. J. Med. Genet. 36, 108–111.

    PubMed  CAS  Google Scholar 

  • Kennedy L. and Shelbourne P. F. (2000) Dramatic mutation instability in HD mouse striatum: does polyglutamine load contribute to cell-specific vulnerability in Huntington’s disease? Hum. Mol. Genet. 9, 2539–2544.

    Article  PubMed  CAS  Google Scholar 

  • Laforet G. A., Sapp E., Chase K., et al. (2001) Changes in cortical and striatal neurons predict behavioral and electrophysiological abnormalities in a transgenic murine model of Huntington’s disease. J. Neurosci. 21, 9112–9123.

    PubMed  CAS  Google Scholar 

  • Leavitt B. R., Guttman J. A., Hodgson J. G., et al. (2001) Wild-type huntingtin reduces the cellular toxicity of mutant huntingtin in vivo. Am. J. Hum. Genet. 68, 313–324.

    Article  PubMed  CAS  Google Scholar 

  • Levine M. S., Klapstein G. J., Koppel A., et al. (1999) Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knockin mouse models of Huntington’s disease. J. Neurosci. Res. 58, 515–532.

    Article  PubMed  CAS  Google Scholar 

  • Li. J-L., Hayden M., Almqvist E. W., et al. (2003) A genome scan for modifiers of age at onset in Huntington’s disease: the HD MAPS study. Am. J. Hum. Genet. 73, 682–687.

    Article  PubMed  CAS  Google Scholar 

  • Li H., Li S. H., Yu Z. X., Shelbourne P., and Li X. J. (2001) Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington’s disease mice. J. Neurosci. 21, 8473–8481.

    PubMed  CAS  Google Scholar 

  • Li H., Li S. H., Johnston H., Shelbourne P. F., and Li X. J. (2000) Amino-terminal fragments of mutant huntingtin show selective accumulation in striatal neurons and synaptic toxicity. Nat. Genet. 25, 385–389.

    Article  PubMed  CAS  Google Scholar 

  • Lin C. H., Tallaksen-Greene S., Chien W. M., et al. (2001) Neurological abnormalities in a knock-in mouse model of Huntington’s disease. Hum. Mol. Genet. 10, 137–144.

    Article  PubMed  CAS  Google Scholar 

  • Luthi-Carter R., Hanson S. A., Strand A. D., et al. (2002) Dysregulation of gene expression in the R6/2 model of polyglutamine disease: parallel changes in muscle and brain. Hum. Mol. Genet. 11, 1911–1926.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald M. E., Vonsattel J. P., Shrinidhi J., et al. (1999) Evidence for the GluR6 gene associated with younger onset age of Huntington’s disease. Neurology 53, 1330–1332.

    PubMed  CAS  Google Scholar 

  • Mangiarini L., Sathasivam K., Seller M., et al. (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506.

    Article  PubMed  CAS  Google Scholar 

  • Martin J. B. and Gusella J. F. (1986) Huntington’s disease. Pathogenesis and management. N. Engl. J. Med. 315, 1267–1276.

    Article  PubMed  CAS  Google Scholar 

  • Menalled L., Zanjani H., MacKenzie L., et al. (2000) Decrease in striatal enkephalin mRNA in mouse models of Huntington’s disease. Exp. Neurol. 162, 328–342.

    Article  PubMed  CAS  Google Scholar 

  • Menalled L. B., Sison J. D., Wu Y., et al. (2002) Early motor dysfunction and striosomal distribution of huntingtin microaggregates in Huntington’s disease knock-in mice. J. Neurosci. 22, 8266–8276.

    PubMed  CAS  Google Scholar 

  • Miyoshi K., Tsujii R., Yoshida H., et al. (2002) Normal assembly of 60 S ribosomal subunits is required for the signaling in response to a secretory defect in Saccharomyces cerevisiae. J. Biol. Chem. 277, 18334–18339.

    Article  PubMed  CAS  Google Scholar 

  • Muchowski P. J. (2002) Protein misfolding, amyloid formation, and neurodegeneration: a critical role for molecular chaperones? Neuron 35, 9–12.

    Article  PubMed  CAS  Google Scholar 

  • Myers R. H., Leavitt J., Farrer L. A., et al. (1989) Homozygote for Huntington disease. Am. J. Hum. Genet. 45, 615–618.

    PubMed  CAS  Google Scholar 

  • Naze P., Vuillaume I., Destee A., Pasquier F., and Sablonniere B. (2002) Mutation analysis and association studies of the ubiquitin carboxy-terminal hydrolase L1 gene in Huntington’s disease. Neurosci. Lett. 328, 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Ona V. O., Li M., Vonsattel J. P., et al. (1999) Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature 399, 263–267.

    Article  PubMed  CAS  Google Scholar 

  • Panas M., Avramopoulos D., Karadima G., Petersen M. B., and Vassilopoulos D. (1999) Apolipoprotein E and presenilin-1 genotypes in Huntington’s disease. J. Neurol. 246, 574–577.

    Article  PubMed  CAS  Google Scholar 

  • Panov A. V., Burke J. R., Strittmatter W. J., and Greenamyre J. T. (2003) In vitro effects of polyglutamine tracts on Ca2+-dependent depolarization of rat and human mitochondria: relevance to Huntington’s disease. Arch. Biochem. Biophys. 410, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Panov A. V., Gutekunst C. A., Leavitt B. R., et al. (2002) Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat. Neurosci. 5, 731–736.

    PubMed  CAS  Google Scholar 

  • Penney J. B., Jr., Vonsattel J. P., MacDonald M. E., Gusella J. F., and Myers R. H. (1997) CAG repeat number governs the development rate of pathology in Huntington’s disease. Ann. Neurol. 41, 689–692.

    Article  PubMed  Google Scholar 

  • Persichetti F., Carlee L., Faber P. W., et al. (1996) Differential expression of normal and mutant Huntington’s disease gene alleles. Neurobiol. Dis. 3, 183–190.

    Article  PubMed  CAS  Google Scholar 

  • Ross C. A. (2002) Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington’s disease and related disorders. Neuron 35, 819–822.

    Article  PubMed  CAS  Google Scholar 

  • Rubinsztein D. C., Leggo J., Chiano M., et al. (1997) Genotypes at the GluR6 kainate receptor locus are associated with variation in the age of onset of Huntington disease. Proc. Natl. Acad. Sci. USA 94, 3872–3876.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez I., Mahlke C., and Yuan J. (2003) Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 421, 373–379.

    Article  PubMed  CAS  Google Scholar 

  • Sawa A., Wiegand G. W., Cooper J., et al. (1999) Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nat. Med. 5, 1194–1198.

    Article  PubMed  CAS  Google Scholar 

  • Scherzinger E., Sittler A., Schweiger K., et al. (1999) Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington’s disease pathology. Proc. Natl. Acad. Sci. USA 96, 4604–4609

    Article  PubMed  CAS  Google Scholar 

  • Scherzinger E., Lurz R., Turmaine M., et al. (1997) Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90, 549–558.

    Article  PubMed  CAS  Google Scholar 

  • Schiefer J., Landwehrmeyer G. B., Luesse H. G., et al. (2002) Riluzole prolongs survival time and alters nuclear inclusion formation in a transgenic mouse models of Huntington’s disease. Mov. Disord. 17, 748–757.

    Article  PubMed  Google Scholar 

  • Schilling G., Coonfield M. L., Ross C. A., and Borchelt D. R. (2001) Coenzyme Q10 and remacemide hydrochloride ameliorate motor deficits in a Huntington’s disease transgenic mouse model. Neurosci. Lett. 315, 149–153

    Article  PubMed  CAS  Google Scholar 

  • Schilling G., Becher M. W., Sharp A. H., et al. (1999) Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum. Mol. Genet. 8, 397–407.

    Article  PubMed  CAS  Google Scholar 

  • Shelbourne P. F., Killeen N., Hevner R. F., et al. (1999) A Huntington’s disease CAG expansion at the murine Hdh locus is unstable and associated with behavioural abnormalities in mice. Hum. Mol. Genet. 8, 763–774.

    Article  PubMed  CAS  Google Scholar 

  • Slow E. J., Van Raamsdonk J., Rogers D., et al. (2003) Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum. Mol. Genet. 12, 1555–1567.

    Article  PubMed  CAS  Google Scholar 

  • Sugars K. L. and Rubinsztein D. C. (2003) Transcriptional abnormalities in Huntington disease. Trends Genet. 19, 233–238.

    Article  PubMed  CAS  Google Scholar 

  • Takano H. and Gusella J. F. (2002) The predominantly HEAT-like motif structure of huntingtin and its association and coincident nuclear entry with dorsal, an NF-kB/Rel/dorsal family transcription factor. BMC Neurosci. 3, 15.

    Article  PubMed  Google Scholar 

  • The Huntington Study Group (2001) A randomized, placebo-controlled trial of coenzyme Q10 and remacemide in Huntington’s disease. Neurol. 57, 397–404.

    Google Scholar 

  • Trettel F., Rigamonti D., Hilditch-Maguire P., et al. (2000) Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells. Hum. Mol. Genet. 9, 2799–2809.

    Article  PubMed  CAS  Google Scholar 

  • Trottier Y., Lutz Y., Stevanin G., et al. (1995) Polyglutamine expansion as a pathological epitope in Huntington’s disease and four dominant cerebellar ataxias. Nature 378, 403–406.

    Article  PubMed  CAS  Google Scholar 

  • Tsuno A., Miyoshi K., Tsujii R., Miyakawa T., and Mizuta K. (2000) RRS1, a conserved essential gene, encodes a novel regulatory protein required for ribosome biogenesis in Saccharomyces cerevisiae. Mol. Cell Biol. 20, 2066–2074.

    Article  PubMed  CAS  Google Scholar 

  • Velier J., Kim M., Schwarz C., et al. (1998) Wild-type and mutant huntingtins function in vesicle trafficking in the secretory and endocytic pathways. Exp. Neurol. 152, 34–40.

    Article  PubMed  CAS  Google Scholar 

  • Vonsattel J. P. and DiFiglia M. (1998) Huntington disease. J. Neuropathol. Exp. Neurol. 57, 369–384.

    PubMed  CAS  Google Scholar 

  • Wheeler V. C., Lebel L. A., Vrbanac V., et al. (2003) Mismatch repair gene Msh2 modifies the timing of early disease in Hdh(Q111) striatum. Hum. Mol. Genet. 12, 273–281.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler V. C., Gutekunst C. A., Vrbanac V., et al. (2002) Early phenotypes that presage late-onset neurodegenerative disease allow testing of modifiers in Hdh CAG knock-in mice. Hum. Mol. Genet. 11, 633–640

    Article  PubMed  CAS  Google Scholar 

  • Wheeler V. C., White J. K., Gutekunst C. A., et al. (2000) Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny striatal neurons in HdhQ92 and HdhQ111 knockin mice. Hum. Mol. Genet. 9, 503–513.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler V. C., Auerbach W., White J. K., et al. (1999) Length-dependent gametic CAG repeat instability in the Huntington’s disease knock-in mouse. Hum. Mol. Genet. 8, 115–122

    Article  PubMed  CAS  Google Scholar 

  • White J. K., Auerbach W., Duyao M. P., et al. (1997) Huntingtin is required for neurogenesis and is not impaired by the Huntington’s disease CAG expansion. Nat. Genet. 17, 404–410.

    Article  PubMed  CAS  Google Scholar 

  • Xia J., Lee D. H., Taylor J., Vandelft M., and Truant R. (2003) Huntingtin contains a highly conserved nuclear export signal. Hum. Mol. Genet. 12, 1393–1403.

    Article  PubMed  CAS  Google Scholar 

  • Zeitlin S., Liu J. P., Chapman D. L., Papaioannou V. E., and Efstratiadis A. (1995) Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington’s disease gene homologue. Nat. Genet. 11, 155–163.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcy E. MacDonald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacDonald, M.E., Gines, S., Gusella, J.F. et al. Huntington’s Disease. Neuromol Med 4, 7–20 (2003). https://doi.org/10.1385/NMM:4:1-2:7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:4:1-2:7

Index Entries

Navigation