Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A newly discovered class of human hematopoietic cells with SCID-repopulating activity

Abstract

The detection of primitive hematopoietic cells based on repopulation of immune-deficient mice is a powerful tool to characterize the human stem-cell compartment. Here, we identify a newly discovered human repopulating cell, distinct from previously identified repopulating cells, that initiates multilineage hematopoiesis in NOD/SCID mice. We call such cells CD34neg- S CID r epopulating c ells, or CD34neg-SRC. CD34neg-SRC are restricted to a LinCD34CD38 population without detectable surface markers for multiple lineages and CD38 or those previously associated with stem cells (HLA-DR, Thy-1 and CD34). In contrast to CD34+ subfractions, LinCD34CD38 cells have low clonogenicity in short-and long-term in vitro assays. The number of CD34neg-SRC increased in short-term suspension cultures in conditions that did not maintain SRC derived from CD34+ populations, providing independent biological evidence of their distinctiveness. The identification of this newly discovered cell demonstrates complexity of the organization of the human stem-cell compartment and has important implications for clinical applications involving stem-cell transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotypic analysis of human LinCD34 hematopoietic cells.
Figure 2: Frequency analysis of LinCD34 cells found in human hematopoietic tissue throughout development.
Figure 3: Human cell engraftment of NOD/SCID mice transplanted at various cell doses with purified LinCD34 cells from cord blood.
Figure 4: Multilineage differentiation of human LinCD34 cells in NOD/SCID mice.
Figure 5: Capacity of LinCD34, LinCD34CD38, LinCD34CD38+ and LinCD34+CD38 cells cell fractions to engraft NOD/SCID after ex vivo culture.

Similar content being viewed by others

References

  1. Phillips, R. Hematopoietic stem cells: concepts, assays, and controversies. Sem. Immunol. 3, 337–347 (1991).

    CAS  Google Scholar 

  2. Morrison, S., Uchida, N. & Weissman, I. The biology of hematopoietic stem cells. Annu. Rev. Cell Dev. Biol. 11, 35– 71 (1995).

    CAS  PubMed  Google Scholar 

  3. Orlic, D. & Bodine, D. What defines a pluripotent hematopoietic stem cell (PHSC): will the real PHSC please stand up. Blood 84, 3991–3994 (1994).

    CAS  PubMed  Google Scholar 

  4. Krause, D.S., Fackler, M.J., Civin, C.I. & May, W.S. CD34: structure, biology, and clinical utility. Blood 87, 1–13 (1996).

    CAS  PubMed  Google Scholar 

  5. Andrews, R., Singer, J. & Bernstein, I. Precursors of colony-forming cells in humans can be distinguished from colony-forming cells by expression of CD33 and CD34 antigen and light scatter. J. Exp. Med. 169, 1721 (1989).

    CAS  PubMed  Google Scholar 

  6. Jones, R.J. et al. Characterization of mouse lymphohematopoietic stem cells lacking spleen colony-forming activity. Blood 88, 487–491 (1996).

    CAS  PubMed  Google Scholar 

  7. Goodell, M.A., Brose, K., Paradis, G., Conner, A.S. & Mulligan, R.C. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183, 1797–1806 (1996).

    CAS  PubMed  Google Scholar 

  8. Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245 ( 1996).

    CAS  PubMed  Google Scholar 

  9. Goodell, M. et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nature Med. 3, 1337–1345 (1997).

    CAS  PubMed  Google Scholar 

  10. Dick, J.E. Normal and leukemic human stem cells assayed in SCID mice. Sem. Immunol. 8, 197–206 ( 1996).

    CAS  Google Scholar 

  11. Lapidot, T. et al. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in scid mice. Science 255, 1137–1141 (1992).

    CAS  PubMed  Google Scholar 

  12. Kamel-Reid, S. & Dick, J.E. Engraftment of immune-deficient mice with human hematopoietic stem cells. Science 242, 1706–1709 ( 1988).

    CAS  PubMed  Google Scholar 

  13. Larochelle, A. et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nature Med. 2, 1329–1337 (1996).

    CAS  PubMed  Google Scholar 

  14. Bhatia, M., Wang, J.C.Y., Kapp, U., Bonnet, D. & Dick, J.E. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc. Natl. Acad. Sci. USA 94, 5320–5325 ( 1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, J.C., Doedens, M. & Dick, J.E. Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo SCID-repopulating cell assay. Blood 89, 3919–3924 ( 1997).

    CAS  PubMed  Google Scholar 

  16. Bhatia, M. et al. Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture. J. Exp. Med. 186, 619–624 ( 1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sutherland, D.R., Anderson, L., Keeney, M., Nayar, R. & Chin-Yee, I. The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J. Hematother 5, 213–226 (1996).

    CAS  PubMed  Google Scholar 

  18. Terstappen, L.W.W.M., Huang, S., Safford, M., Lansdorp, P.M. & Loken, M.R. Sequential generations of hematopoietic colonies derived from single nonlineage-committed CD34+CD38- progenitor cells. Blood 77, 1218–1227 ( 1991).

    CAS  PubMed  Google Scholar 

  19. Huang, S. & Terstappen, L.W. Lymphoid and myeloid differentiation of single human CD34+, HLA-DR+, CD38- hematopoietic stem cells. Blood 83, 1515–1526 ( 1994).

    CAS  PubMed  Google Scholar 

  20. Baum, C.M., Weissman, I.L., Tsukamoto, A.S., Buckle, A.-S. & Peault, B. Isolation of a candidate human hematopoietic stem-cell population. Proc. Natl. Acad. Sci. U.S.A. 89, 2804–2808 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Craig, W., Kay, R., Cutler, R.B. & Lansdorp, P.M. Expression of Thy-1 on human hematopoietic progenitor cells. J. Exp. Med. 177, 1331–1342 ( 1993).

    CAS  PubMed  Google Scholar 

  22. Lansdorp, P.M., Dragowska, W. & Mayani, H. Ontogeny-related changes in proliferative potential of human hematopoietic cells. J. Exp. Med. 178, 787–791 (1993).

    CAS  PubMed  Google Scholar 

  23. Tavian, M. et al. Aorta-associated CD34+ hematopoietic cells in the early human embryo. Blood 87, 67–72 (1996).

    CAS  PubMed  Google Scholar 

  24. To, L.B., Haylock, D.N., Simmons, P.J. & Juttner, C.A. The biology and clinical uses of blood stem cells. Blood 89, 2233–2258 (1997).

    CAS  PubMed  Google Scholar 

  25. Bodine, D.M., Seidel, N.E. & Orlic, D. Bone marrow collected 14 days after in vivo administration of granulocyte colony-stimulating factor and stem cell factor to mice has 10-fold more repopulating ability than untreated bone marrow. Blood 88, 89–97 ( 1996).

    CAS  PubMed  Google Scholar 

  26. Hao, Q.L., Shah, A.J., Thiemann, F.T., Smogorzewska, E.M. & Crooks, G.M. A functional comparison of CD34 + CD38- cells in cord blood and bone marrow. Blood 86, 3745–3753 (1995).

    CAS  PubMed  Google Scholar 

  27. Pflumio, F. et al. Phenotype and function of human hematopoietic cells engrafting immune-deficient CB17-severe combined immunodeficiency mice and nonobese diabetic-severe combined immunodeficiency mice after transplantation of human cord blood mononuclear cells. Blood 88, 3731–3740 (1996).

    CAS  PubMed  Google Scholar 

  28. Hogan, C.J. et al. Engraftment and development of human CD34(+)-enriched cells from umbilical cord blood in NOD/LtSz-scid/scid mice. Blood 90, 85–96 (1997).

    CAS  PubMed  Google Scholar 

  29. Grosset, C. et al. In vitro biosynthesis of leukemia inhibitory factor/human interleukin for DA cells by human endothelial cells: differential regulation by interleukin-1 alpha and glucocorticoids. Blood 86 , 3763–3770 (1995).

    CAS  PubMed  Google Scholar 

  30. Korpelainen, E.I. et al. Interferon-gamma upregulates interleukin-3 (IL-3) receptor expression in human endothelial cells and synergizes with IL-3 in stimulating major histocompatibility complex class II expression and cytokine production. Blood 86, 176–182 (1995).

    CAS  PubMed  Google Scholar 

  31. Zanjani, E.D., Almeida-Porada, G., Livingston, A.G., Flake, A.W. & Ogawa, M. Human bone marrow CD34- cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells. Exp Hematol 26, 353– 360 (1998).

    CAS  PubMed  Google Scholar 

  32. Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645– 648 (1994).

    CAS  PubMed  Google Scholar 

  33. Bonnet, D. & Dick, J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med. 3, 730–737 ( 1997).

    CAS  PubMed  Google Scholar 

  34. Bensinger, W. et al. Transplantation of allogeneic CD34+ peripheral blood stem cells in patients with advanced hematologic malignancy. Blood 88, 4132–4138 (1997).

    Google Scholar 

  35. Croisille, L. et al. Hydrocortisone differentially affects the ability of murine stromal cells and human marrow-derived adherent cells to promote the differentiation of CD34++/CD38- long-term culture-initiating cells. Blood 84, 4116–4124 (1994).

    CAS  PubMed  Google Scholar 

  36. Louache, F., Debili, N., Marandin, A., Coulombel, L. & Vainchenker, W. Expression of CD4 by human hematopoietic progenitors. Blood 84, 3344–3355 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. McWhirter for providing cord blood and fetal specimens, H. Messner and N. Jamal for providing bone marrow and peripheral blood samples, G. Knowles for technical support in the flow cytometric analysis, and R. Phillips, A. Bernstein, N. Iscove, R. McInnes and members of the laboratory for reviewing the manuscript. This work was supported by grants to J.E.D. from the Medical Research Council of Canada (MRC), the National Cancer Institute of Canada (NCIC) with funds from the Canadian Cancer Society, the Canadian Genetic Diseases Network of the National Centers of Excellence, an MRC Scientist award (J.E.D.), postdoctoral fellowships from the NCIC (M.B.), and the Human Frontier Science Organization Program (D.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Dick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatia, M., Bonnet, D., Murdoch, B. et al. A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med 4, 1038–1045 (1998). https://doi.org/10.1038/2023

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2023

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing