The kind of expertise someone who specialises in ethics has, or indeed whether it makes sense to talk of moral expertise, is keenly debated and is a far from settled issue. It has been of interest to moral philosophers, partly because of the light it might shine on the nature of morality. It has also been debated within medical ethics, with some arguing against the idea that expertise in moral philosophy translates into ethical expertise and others arguing that skills in ethical justification can be viewed as ethical expertise.

This issue of the Journal of Medical Ethics includes a number of papers that demonstrate the importance of ethical expertise and some of the distinctive elements of it.

Public involvement in research is seen in a number of countries as something valuable and in some, such as Australia, it can be a criterion for research grants. The UK National Standards for Public Involvement in Research are discussed in this issue of JME and McCoy et al provide a good illustration of why ethical expertise is important for framing public policy. The appeal of stakeholders having some say into research projects, particularly when they are funded via taxation is easy to understand, so who would not see public involvement as a good thing? However, McCoy et al claim that while there is a substantial and growing literature on public involvement in research that tends to emphasise the importance of public involvement, it doesn’t explain how or what this looks like when it is working well. Key questions that they ask, which typify a Socratic approach to ethics, revolve around the ‘why’ and the ‘how’ of ethical analysis. They ask why public involvement is of value. Clarifying that question is key to being able to evaluate when it is a good thing to do and how it should be done. A core activity of ethics and something that those who can claim ‘ethical expertise’ should be good at, is ethical justification. Those who do ethics well are experts in scrutinising justifications and the authors of this paper take this to be lacking in the Standard.

Reproductive technologies feature prominently in this issue, and a number of papers focus on issues surrounding the importance of the genetic and biological similarity between children created in this way and their parents. Many will have a view about the value of being biologically related to one’s children, but it is a value that can be difficult to justify. This is an important issue for assisted reproductive technologies because if there is no good justification for valuing the biological relatedness of children, then that undermines the rationale for using assisted reproductive technology in many cases. It’s worth noting that ‘biologically related’ means something broader than being genetically related, being the gestational mother to a child could be considered a ‘biological relationship’, yet might not involve a genetic relationship if donor eggs are used.

Arguments by analogy are perhaps the most widely used strategy in medical ethics and Di Nucci structures his paper around the analysis of the similarities and differences between racism and the preference to be biologically related to one’s children. His conclusion is that while there are cogent moral reasons against this preference, and this preference is not morally legitimate, it does not amount to racism.

Mitochondrial Replacement Techniques (MRTs) aim at preventing the transmission of serious mitochondrial disorders to a future child and involve replacing faulty mitochondria from unfertilized eggs or early embryos with healthy mitochondria from a donor egg or embryo. Given that any resulting child will be genetically related to the mitochondrial donor, as well as to those who are using the technology to create a child, it complicates the biological and genetic relationships for that child. Palacios-González grapples with the conceptual and ethical questions that MRTs present and considers competing accounts about whether resulting children have three genetic parents. Murphy considers the possibility that it might become feasible to create synthetic gametes and what that would mean for the degree of genetic relatedness between children and parents. On Di Nucci’s view, and a number of others engaged in this debate, that would merely mean that something that is of questionable moral value anyway, is reduced. But for others it lessens one of the aims of reproductive technologies, which is to create children who are genetically related to those who will rear them. Murphy teases out the implications of valuing genetic relatedness for same sex couples and argues that this implies we should prioritise same sex couples for technologies that create genetic relatedness because it is usually the case for them that children are genetically related to only one parent and new technologies of this kind could promote this value for them. The ethical implications of MRTs are considered again in Schafer’s analysis of donor consent. In at least some cases, the donor eggs needed for MRT came from women who were envisaging that they would be used for IVF. One type of MRT involves the insertion of the mitochondrial DNA from an egg from the intending mother into the enucleated donor egg. The issue at stake is whether donors should have been informed that their eggs would be used in this way. So, this is in effect an argument about why the differences between IVF and MRT are material to the decision a donor makes and are essential for their consent to count as ‘informed’.

The third paper in this issue on MRTs argues a similar thesis to Murphy. Cavaliere and Palacios-González note that in the UK, the Human Fertilisation and Embryology Authority permits the use of MRTs when they are used to prevent the transmission of a ‘serious mitochondrial disease’. MRTs could potentially be used by a lesbian couple to create a child that is genetically related to both women, by using the nuclear DNA from one partner and the mtDNA from the other. Cavaliere and Palacios-González consider arguments that have been published about the welfare of children resulting from the use of these technologies and conclude that because the welfare of a specific child is not impacted, MRTs cannot be considered therapeutic. This opens the door for them to consider reproductive freedoms and the other ends that MRTs might further. They argue that in general, reproductive technologies are important because they enable people to pursue important and personal life plans. They then argue that for lesbian couples creating a child that is genetically related to both of them could be an important life plan of this sort and they therefore have a similar claim to accessing MRTs to those who have a mitochondrial condition.
The concise argument

The ethical issues raised by public policy about matters such as research and assisted reproductive technologies require more than a simply evaluation of their risks, costs and public opinion about them. New reproductive technologies such as MRTs, in particular, raise complex conceptual challenges and their analysis demands careful attention to ethical justification. Those who can claim ethical expertise will typically test ethical positions for their implications and consistency with other positions. They will often consider whether concepts that are likely to imply ethical legitimacy, such as ‘therapeutic’ or ‘stakeholder’ apply in this case and imply what they are assumed to. Ethical expertise is foundational for good medical ethics.

Acknowledgements I’m grateful to Dr Jeanne Snelling for comments upon a draft of this editorial.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Provenance and peer review Commissioned; internally peer reviewed.

© Author(s) (or their employer(s)) 2018. No commercial re-use. See rights and permissions. Published by BMJ.

REFERENCES