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ABSTRACT
We argue why interpretability should have primacy 
alongside empiricism for several reasons: first, if 
machine learning (ML) models are beginning to render 
some of the high-risk healthcare decisions instead 
of clinicians, these models pose a novel medicolegal 
and ethical frontier that is incompletely addressed by 
current methods of appraising medical interventions 
like pharmacological therapies; second, a number of 
judicial precedents underpinning medical liability and 
negligence are compromised when ’autonomous’ ML 
recommendations are considered to be en par with 
human instruction in specific contexts; third, explainable 
algorithms may be more amenable to the ascertainment 
and minimisation of biases, with repercussions for 
racial equity as well as scientific reproducibility and 
generalisability. We conclude with some reasons for 
the ineludible importance of interpretability, such as 
the establishment of trust, in overcoming perhaps the 
most difficult challenge ML will face in a high-stakes 
environment like healthcare: professional and public 
acceptance.

INTRODUCTION
The serendipitous intersection of mature theoretical 
foundations, powerful computational infrastruc-
ture and ‘big data’ has impelled the groundbreaking 
advances of machine learning (ML) that have epit-
omised what Klaus Schwab of the World Economic 
Forum famously described as the ‘Fourth Industrial 
Revolution’ in 2015.1

Since its debut in the 1980s, computerised clin-
ical decision support (CDS) has become increas-
ingly integrated into the healthcare ecosystem, 
striving with varying success to facilitate healthcare 
professionals with everything from streamlining 
administrative duties to increasing diagnostic accu-
racy.2 Some view ML to be a natural evolution of 
CDS, while others highlight it as a revolutionary 
leap in the ‘intelligence’ of machines, now train-
able to the standard of human experts in specific 
contexts.3 4 These recent invasions of a formerly 
exclusive domain of human minds have garnered as 
much enthusiasm as they have concerns of trans-
forming the basic professional and moral duties 
of doctors.5 The opacity of these perhaps dysto-
pian ‘black box’ ML models has ignited cries for 
causal explanations, or alternatively for transpar-
ency on how they arrive at answers that may have 
the power to impact the lives of so many, particu-
larly in the wake of a sobering history of predic-
tive algorithms that have only managed to amplify 
pre-existing racial inequities in healthcare provision 
and contributed dangerously to erroneous decision-
making in criminal justice.6–8 A rapidly burgeoning 

quest for increasing interpretability (often used 
synonymously with explainability in ML research) 
offers the possibility of allaying some of these fears.

Yet the view that increased interpretability is of 
utmost importance to progress in ML in healthcare 
is not held by all. Alex John London argues that 
interpretability in ML may reflect the widely held 
misbelief that medical expertise is more consistently 
explicable and axiomatic than it is in reality, arguing 
that medical decision-making is in fact influenced 
by an amalgam of the anecdotal, empirical, associ-
ationist and causal.5 London asserts that replicable 
validation of any ML model’s efficacy should there-
fore be emphasised over an intractable requirement 
of interpretability, and that such interpretability may 
in certain situations prove deceptive or deleterious.5 
Recent emphatic invocations to the Popperian 
ideals of reproducibility in ML align with London’s 
thesis that empirical validation should be priori-
tised, raising the question of the extent to which the 
pursuit of increased interpretability should feature 
in the research and development of ML models 
in healthcare. If efforts to shine a proverbial light 
into the ‘black box’ serve only to satisfy academic 
curiosity and quell irrational fears, then it could 
be argued that the considerable time and resources 
currently devoted to the pursuit of increased inter-
pretability are ethically unjustifiable. To address 
these concerns, we respond to the following ques-
tion: should the pursuit of increased interpretability 
of ML models in healthcare be abandoned?

In addition to the implications of interpretability 
on establishing trust—an argument that features 
prominently in the most contemporaneous ethical 
discussions and guidelines for ML research9–12—we 
discuss the value of interpretability in the context of 
extant medicolegal precedents as well as its poten-
tial value in expediating the iterative process of 
model development and external validation.

EQUALITY AND EQUITY
Ingrained biases within the data sets and mathe-
matical formulae that train ML algorithms present 
a pernicious and potentially far-reaching threat to 
justice, which might remain undetected if inter-
pretability is not pursued. Even relatively ‘simple’, 
more interpretable algorithms require considerable 
ingenuity, insight and domain expertise in order 
to unveil and redress the kinds of prejudices that 
they may be propagating to the detriment of many 
vulnerable people. In a recent example of this, Ober-
meyer et al painstakingly uncovered and helped to 
rectify a proprietary healthcare insurance algorithm 
applied to millions of Americans every year that 
was significantly biased against Black Americans.8 
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Although they were able to circumnavigate the opacity of the 
algorithm with large, granular data sets and a jolt of creativity, 
their inquiry would have been appreciably easier with a window 
into the algorithm’s lines of reasoning.

Biases stacked against the under-represented and more vulner-
able populations have become especially topical as healthcare 
systems and practitioners buckling under the unparalleled onus 
of the COVID-19 pandemic look towards technological solu-
tions, including those with an ML/artificial intelligence (AI) 
backend, to assist them. As much as these models are in critical 
need to assuage the pressures of COVID-19, a recent systematic 
review of 145 prediction models for COVID-19 suggested that 
the majority of these models were too vulnerable to bias for clin-
ical utilisation and fundamentally lacked model transparency.13

With respect to associationist analytical modalities like ML 
models, some have argued that an awareness of the limitations of 
what one may deduce from any given data set is more important 
than the need for model interpretability per se.5 14 While such a 
philosophy would discourage the mistaken conflation of correla-
tion with causal inference, for example, some intrinsic shortcom-
ings of the data sets may remain latent until post hoc reflection, 
a vital phase of education, whether in human or machine. In 
a series of experiments exploring the utility of algorithms to 
explain other ML models, Tulio Ribeiro et al reference a classic 
anecdote of specious learning, where a model that can perfectly 
segregate images of huskies from wolves may be trusted to 
continue doing so until the ‘black box’ is revealed to be merely 
seeking the presence of snow in the background to ‘correctly’ 
classify a wolf.15 In other words, the standard metrics of gauging 
performance (such as classification accuracy and positive predic-
tive value) would have served only to cloak the ill logic of the 
model with a flattering veil. By seeing using the machine’s ‘eyes’ 
via a human-interpretable lens, the corrigible biases of the data 
set came to light; with empirical validation alone, on the other 
hand, they may have not.

Drawing parallels from the way we as humans find it more 
difficult, if not impossible, to learn from a ‘wicked’ learning 
environment—where informational mismatches and ‘black 
boxes’ are rife—achieving interpretability in ML models is 
likely to assist substantially in discerning and correcting for the 
very injustices and biases that these models are otherwise quite 
capable of ‘unintelligently’ enforcing.16

REPRODUCING INTERPRETABILITY AND ACCURACY
In conjunction with the problematic biases of data sets and 
their algorithmically distilled abstractions, ML research has 
been reeling in the wake of another bias: a reproducibility crisis 
fanned by publication bias, similar to that seen in other branches 
of science.17 The usual suspects are manifest here—incom-
plete methodology, protection of intellectual property, inter 
alia—compounded by more domain-specific challenges from 
ML’s dependence on a colossal array of ‘experiential’ variables, 
including the exact data set for training, the hyperparameters 
‘tuned’ to optimise performance and the fundamental stochas-
ticity of learning.17

The outcomes of healthcare ML models that are most 
frequently communicated are measures of predictive perfor-
mance, for example, diagnostic accuracy, sensitivity and spec-
ificity. The aforementioned instance of misplaced ‘logic’ in 
distinguishing wolves from huskies is a fable of relevance here 
too: two ML models may be just as precise as one another, but the 
‘rationale’ of one model may be entirely ungeneralisable (using 
snow in the backdrop as the sole determinant of wolves would 

prohibit the model from sighting them in any other context). 
Some have argued that these discrepancies may not matter as 
long as more clinically meaningful outcome measures, such as 
mortality and morbidity, have been robustly and reproducibly 
assessed. However, with the aid of error auditing through inter-
pretability methods, in silico research and development cycles 
can avail themselves of far superior efficiencies in cost and prog-
ress than their counterparts in, for instance, the pharmaceu-
tical industry; this argument in support of interpretability may 
equally apply to the inherent inefficiencies observed with recent, 
siloed developments of COVID-19 diagnostic and prognostic 
models.13

Error auditing does not simply serve the purpose of correcting 
underperforming, biased and/or ungeneralisable models, but it 
could also help engender trust in the use of ML in healthcare (see 
the Clinical adoption section). It is widely believed that ethical 
governance is key, although insufficient by itself, to building trust 
in AI, championing ‘aircraft flight data recorder’-type post hoc 
analyses to shed light on contributors to adverse events involving 
the use of AI.9–12 18

While error auditing should not replace rigorous preclinical 
development phases that can unequivocally overcome some of 
the reproducibility concerns outlined above, it can be argued 
that error auditing has an important, complementary role to play 
in promoting the safe application of ML in healthcare, aided by 
enhancing interpretability.

One of the reverberating arguments for prioritising empir-
ical validation over interpretability is the commonly held belief 
that interpretability is a counterpoise to predictive perfor-
mance. In the field of genomics, for example, within a few years 
of Libbrecht and Noble’s influential overview of genetic ML 
approaches, which echoed the zeitgeist of interpretability at the 
expense of performance, significant strides have been made in 
ameliorating interpretability along with predictive power.19 20 
Furthermore, as the complexity of ML models has increased, 
the cross-disciplinary integration of other computer science 
fields, like visual analytics, is starting to beget more human-
interpretable visualisations of what these models are ‘learning’. 
Continuing along the genomic theme, the interpretability of ML 
models has benefited from ideas jumping across disciplinary 
boundaries: Koo and Ploenzke improved the interpretability of 
a genomic ML model by exploiting a method frequently used 
to separate true signal from background noise in digital micros-
copy.21 This sort of work lends weight to the importance of culti-
vating more collaboration between ML researchers and experts 
in related computer science fields to ultimately spawn more 
visually understandable representations of what ML models are 
‘learning’, particularly (again) when applied to a medical realm 
that holds such deep significance to individuals and groups as 
genomics.22

ACCOUNTABILITY AND THE LAW
As ML-driven healthcare applications become more sophisti-
cated, they can be increasingly considered to be an extension 
of the routine cognitive processes of live physicians. The most 
advanced ML healthcare applications today are able to stand 
in for doctors with marginal human oversight, as exemplified 
by the diagnostic accuracy of an offline AI smartphone app in 
screening for diabetic retinopathy.23 By providing ophthalmo-
logical ‘expertise’ in regions underserved by existing healthcare 
infrastructures, these computer programs are acting en lieu 
of their human counterparts. In this sense, ML in healthcare 
stands distinct from more conventional ‘interventions’ assessed 

 on A
pril 8, 2024 by guest. P

rotected by copyright.
http://jm

e.bm
j.com

/
J M

ed E
thics: first published as 10.1136/m

edethics-2020-107102 on 18 M
ay 2021. D

ow
nloaded from

 

http://jme.bmj.com/


583Yoon CH, et al. J Med Ethics 2022;48:581–585. doi:10.1136/medethics-2020-107102

Clinical ethics

in clinical trials, such as pharmacotherapy and medical devices, 
with ML models capable of decision-making themselves.

By outsourcing some of the decision-making to ML models, 
the question arises as to who is accountable if ML model failure 
results in an adverse event. In AI literature, this question has 
been exhaustively discussed, not least with regard to self-driving 
cars and autonomous drones. This debate has largely revolved 
around two categories of issues, which can be crudely described 
as human versus machine accountability and human versus 
human accountability. With regard to the former, the question 
that has been the focus of debate is whether a redistribution 
of accountability from humans to machines occurs as a result 
of advances in AI, with a subsequent reduction in ‘meaningful’ 
human accountability resulting in an ‘accountability gap’.24 On 
the other hand, the latter concerns the question of which human 
actors are accountable (and to what extent) for an adverse event 
involving AI when multiple human actors are involved, known 
as the ‘problem of many hands’.25

When seeking to address the question of whether the pursuit 
of greater interpretability is key to progress in ML in healthcare, 
one might ask the question of whether interpretability impacts 
on these accountability debates. As a thought experiment, one 
might compare two scenarios in which an adverse patient event 
has occurred (eg, an ML model has misdiagnosed COVID-19 
as a common cold, sending the patient home when in fact they 
required hospitalisation and ventilatory support) as a result of 
faulty ML ‘reasoning’ despite empirical validation (ML model 
found to be better than alternatives, and seen to be geograph-
ically generalisable from one area to another), with the only 
difference between the scenarios being the level of interpret-
ability. Suppose that, in scenario 1, the ML model is completely 
uninterpretable to the attending physician and, in scenario 2, 
the ML model is fully interpretable and the ML ‘reasoning’ is 
fully understood by the attending physician. One could then ask 
the question of whether the distinction between scenario 1 and 
scenario 2 (level of interpretability) impacts the degree to which 
the attending physician is accountable for the adverse patient 
event. One response could be that in scenario 2 the attending 
physician has full understanding of the illogic of the ML model, 
thus the decision to proceed with a problematic model despite 
empirical validation is at the very least risky. The physician is 
accountable for the adverse outcome, at least to some extent, 
and should receive a significant proportion of the blame relative 
to other actors (either human or non-human). In scenario 1, it 
could be argued that the proportion of responsibility would be 
different from that in scenario 2, as the physician did not know 
that the ML model’s reasoning was problematic, in which case 
the other actors (model developers and empirical validators) may 
be relatively more accountable compared with those in scenario 
2 (if accountability is understood as a zero-sum game). However, 
regardless of attribution of accountability, if an awareness of the 
illogic of the ML model in scenario 2 increases the responsibility 
of the attending physician for the adverse patient outcome, then 
it must be the case that the physician is relatively less accountable 
for the adverse patient outcome in scenario 1. If this is the case, 
with the degree of interpretability constituting the only differ-
ence between these two scenarios, one must surely conclude that 
interpretability of ML models is relevant to accountability.

The question that would then follow would be whether or not 
current medicolegal benchmarks for determining accountability 
of healthcare professionals in medical cases, such as the Bolam 
test, objective patient standard or subjective patient standard, 
are sufficiently sensitive to accommodate this distinction, or if 
the application of ML in healthcare behoves consideration of 

novel or adapted standards that are sensitive to the ethical rele-
vance of interpretability.26–29

A legal case from 2018 serves to portray existing account-
ability structures in regard to the clinical decision support (CDS) 
tool itself or the misuse thereof.30 The case pertained to a young 
woman who approached her doctor to help her lose weight. Her 
doctor prescribed a CDS-recommended, yet nonetheless medi-
cally contraindicated, prescription of two weight loss medica-
tions, an action that cost the patient her life. In such a scenario, 
does liability rest with the CDS product and its developers, or 
is this medical malpractice? During the ensuing trial, a medical 
expert opined that the doctor should be held accountable for the 
deviation from the expected standard of care, namely the failure 
to act judiciously as a learned intermediary between the CDS 
product and the patient. However, a summary judgment was 
initially granted in favour of the prescribing doctor and the rele-
vant software company, with the medical expert being deemed 
insufficiently versed in computer programming. In other words, 
the spotlight was on the software and not on its use (the trial’s 
conclusion was eventually successfully appealed). Whether the 
program featured AI or not, the proprietary nature of the CDS 
program would have rendered the investigation of its function 
significantly more challenging, a characteristic that has become all 
too common in this industry, perhaps in the name of accelerating 
innovation. Indeed, in 2016, subsection 520(o)(1)E was added 
to the US 21st Century Cures Act, which was originally enacted 
to catalyse medical product development, thereby exempting 
a large swathe of CDS software (including ML models) from 
rigorous testing procedures associated with categorisation as a 
‘medical device’, provided the software ‘enables the health care 
professional to independently review the basis for each recom-
mendation that the software presents’.31 It is not clear if indepen-
dent review by healthcare professionals requires access to a full 
understanding of the inner workings of the model or if a partial 
understanding in some cases could be considered sufficient for 
independent review. However, it is clear from the amendment 
that the developers of the model face a reduction in scrutiny 
if the model is interpretable to the healthcare provider, sugges-
tive of a shift in relative accountability for an adverse outcome 
from the model developer to the healthcare professional. The 
verdict of the aforementioned trial, for instance, has since been 
appealed for a similar repositioning of responsibility towards the 
healthcare professional as the learned intermediary, duty-bound 
to protect patients from potentially harmful products. However, 
if confusion about accountability underscores contemporary 
medicolegal cases like this one, the hypothetical deployment of 
autonomous AI-based software, sophisticated enough to be less 
‘decision support’ and more the primary ‘decision maker’, will 
conjure many more questions than answers, blurring the existing 
boundaries between product liability and medical malpractice. 
For one, how the learned intermediary doctrine would apply in 
the case of an inherently uninterpretable ML model remains to 
be mooted.

CLINICAL ADOPTION
Empirical validation alone will not necessarily translate into 
clinical application, for which a sine qua non is adoption by 
healthcare practitioners, a potentially fraught process for any 
novel technology lacking a homologous precedent. The process 
of trialling and implementing new drugs is so standardised 
and normalised in the medical profession that the paucity of 
expository mechanisms does not preclude their prescription. 
ML models are, by virtue of their nascency, very distant from 
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this position of interventional ‘privilege’, and for good reason: 
healthcare is a risk-based domain, where few things are certain, 
and where trust is a valuable commodity worth earning.

Many researchers of ML in healthcare argue that inextricably 
linked to the issue of trust is interpretability, a reflection of one 
of the cardinal responsibilities of medical practitioners: expla-
nation. Explanation lies at the heart of transparency, multidis-
ciplinary discussion, medical apprenticeship and, perhaps, most 
importantly of all, the patient–clinician dyad that drives life-
altering healthcare decisions.

Presently, randomised controlled trials (RCTs) are consid-
ered to be the acme of evidence-based medicine. Innumer-
able medical therapies in circulation today have been justified 
through such experiments with or without knowledge of their 
underlying biochemical or biophysical mechanisms. The seman-
tics of ‘causality’ in the setting of RCTs can be misconstrued: 
indeed, why a certain treatment is being recommended is clearly 
different from why it works, or why a certain genetic variant 
may be associated with a particular diagnosis without estab-
lished knowledge of its pathogenic role. While these minutiae 
are not mutually exclusive, it is the rationale for why a treat-
ment is recommended that is most commonly integral to ‘shared 
decision-making’ between patients and their clinicians, offering 
support for London’s thesis that empirical validation is of para-
mount importance.5

Yet in the case of ML in healthcare, there is reason to believe 
that if patients or their practitioners are unable to comprehend 
why an ML algorithm recommends a certain action, trust may 
never be established. Recent evidence from the medical arena 
corroborated the pertinence of case-specific explicability for 
procuring the trust of the physicians at the interface between 
their patients and the ML model’s proposals; case-by-case ratio-
nales were deemed more trustworthy than high-level generali-
sations of the model’s functionality, a finding that is congruous 
with the individually tailored care and explanations that are 
typical of patient–doctor dialogues.32

By enabling the users to detect biases and privacy violations, 
debug appropriately and audit the robustness of any given 
model’s predictions, trust may be engendered through a more 
transparent feedback system, which does not need to elaborate 
on the inner workings of the ML model as much as commu-
nicating why certain conclusions or recommendations were 
drawn. Going forward, the degree of interpretability (hence 
clinical usability) seems likely to be as decisive as empirical vali-
dation in determining the reception and implementation of ML 
models in medicine.

CONCLUSIONS
ML offers truly unprecedented diagnostic and prognostic oppor-
tunities as medicine endeavours to become more personalised 
and precise than ever before. In both the research and eventual 
clinical deployment of ML in healthcare, there are multiple 
ethical and judicial precedents that would be better served if the 
growing body of ‘empirical validation’ studies were to priori-
tise, publish and share interpretable ML models. By emphasising 
interpretability alongside context-specific empirical validation, 
we may maximise our chances of rectifying deeply entrenched 
racially and socioeconomically derived health inequities, and 
earn the trust of those who may benefit the most; but if we are 
to achieve this, interpretability cannot remain second fiddle to 
empirical justification.
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